Prove if f is differentiable with f(a) = 0 and $f'(a) \neq 0$,

then f is nonzero in an interval about a (except at a).

Howard Heaton

Typal Academy 5

Proof

We first show f' is nonzero near a (Step 1) and then apply the mean value theorem with this fact (Step 2).

Step 1. Since $f'(a) \neq 0$, there is $\delta > 0$ such that

$$|x-a| \le \delta \implies |f'(x)-f'(a)| \le \frac{|f'(a)|}{2}.$$

By the reverse triangle inequality,

$$|f'(a)| - |f'(x)| \le |f'(x) - f'(a)|$$
, for all x.

Together, these results imply

$$|x-a| \le \delta \quad \Longrightarrow \quad |f'(x)| \ge |f'(a)| - \frac{|f'(a)|}{2} > 0.$$

Thus, f'(x) is nonzero for all $x \in [a - \delta, a + \delta]$.

Howard Heaton

Typal Academy 5

Proof Continued

Step 2. Let $x \in [a - \delta, a) \cup (a, a + \delta]$ be given, and note $x \neq a$. By the mean value theorem, there is ξ_x between x and a such that

$$f'(\xi_x)(x-a) = f(x) - f(a) = f(x),$$

where the final equality holds since f(a) = 0. Since ξ_x is between x and a, it is in the interval $[a - \delta, a + \delta]$, and so $f'(\xi_x) \neq 0$ by Step 1. Thus,

$$f(x) = \underbrace{f'(\xi_x)}_{\neq 0} \cdot \underbrace{(x-a)}_{\neq 0} \neq 0.$$

Because x was arbitrarily chosen in the interval

 $[a - \delta, a) \cup (a, a + \delta]$, the result follows.

Howard Heaton

Typal Academy 👌

Found this useful?

- + Follow for more
- 🖧 Repost to share with friends

Howard Heaton

Typal Academy 5