Prove if *f* is differentiable with $f(a) = 0$ and $f'(a) \neq 0$,

then *f* is nonzero in an interval about *a* (except at *a*).

Howard Heaton

Proof

We first show f' is nonzero near *a* (Step 1) and then apply the mean value theorem with this fact (Step 2).

Step 1. Since $f'(a) \neq 0$, there is $\delta > 0$ such that

$$
|x-a| \le \delta \quad \implies \quad |f'(x)-f'(a)| \le \frac{|f'(a)|}{2}.
$$

By the reverse triangle inequality,

$$
|f'(a)| - |f'(x)| \le |f'(x) - f'(a)|
$$
, for all x.

Together, these results imply

$$
|x - a| \le \delta
$$
 \implies $|f'(x)| \ge |f'(a)| - \frac{|f'(a)|}{2} > 0.$

Thus, $f'(x)$ is nonzero for all $x \in [a - \delta, a + \delta].$

Howard Heaton

Proof Continued

Step 2. Let $x \in [a - \delta, a] \cup (a, a + \delta]$ be given, and note $x \neq a$. By the mean value theorem, there is ξ_x between *x* and *a* such that

$$
f'(\xi_x)(x-a) = f(x) - f(a) = f(x),
$$

where the final equality holds since $f(a) = 0$. Since ξ_x is between *x* and *a*, it is in the interval $[a - \delta, a + \delta]$, and so $f'(\xi_x) \neq 0$ by Step 1. Thus,

$$
f(x) = \underbrace{f'(\xi_x)}_{\neq 0} \cdot \underbrace{(x-a)}_{\neq 0} \neq 0.
$$

Because *x* was arbitrarily chosen in the interval

 $[a - \delta, a) \cup (a, a + \delta]$, the result follows.

Howard Heaton

Found this useful?

- + Follow for more
- \bullet Repost to share with friends

Howard Heaton