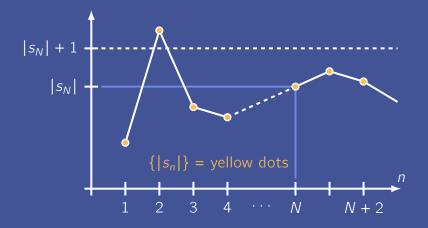
Lemma: Cauchy sequences are bounded.



Proof

Let $\{s_n\}$ be a Cauchy sequence. It suffices to show there is M>0 such that $|s_n|\leq M$ for all n.

Since $\{s_n\}$ is Cauchy, there is N such that

$$|s_n - s_m| \le 1$$
, for all $m, n \ge N$.

Picking m = N and using the triangle inequality reveals

$$|s_n| \le |s_N| + |s_N - s_n| \le |s_N| + 1$$
, for all $n \ge N$.

This implies

$$|s_n| \le \max\{|s_1|, |s_2|, \dots, |s_{N-1}|, |s_N| + 1\}$$
, for all n , set M to be this expression

and the proof is complete.

Found this useful?

- + Follow for more
- Repost to share with friends

