3 Ways Optimization
is

Well-Conditioned

or

I1I-Conditioned

Howard Heaton Typal Academy &



Given input data d and a function fy, consider
min fy(x).
X
Assume x; is the unique solution to this problem, i.e.
Xy = argmin fy(x).
X

Three matters of interest:

» How solutions x; change with input data d

» How the landscape (e.g. gradients) change with x

» How ratios of singular values affect matrix behavior
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Conditioning of Problem

The problem’s relative condition number is

* *
Xdsp = X
) = [y s I I+ - all /el
60" ||p||<6 [Ix3 |l |l dl|

This can be viewed as the limit of the supremum over all
infinitesimal perturbations p. Differences in solutions
are divided by the size of the solution itself; in the de-
nominator, perturbations p are considered relative to

the norm of input data d. If XJ is differentiable, then

*
aXd

ax || lldl
od

X3 11"

ke(d) = ‘
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Conditioning of Landscape (Operator)

The landscape of a function is here described in terms
of how it is traversed (e.g. gradient descent). If T, is
a map from each point x to a point T4(x), then the
relative condition number for the landscape is

T.(x+p)-T,
kea(x) = fim sup 1TextP) —Ta(all flipll.
0-0" |Ipl|<6 | Ta()]| x|

Note: It would be more proper to call this the condition
number for the operator T,, but “function landscapes”

are widely known and discussed (unlike operators).
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Special Case — Gradient Descent

If f, is twice differentiable with Hessian Hy(x) and the

operator T, gives the update in gradient descent, /.e.
Ty(x) =x—aV fy(x)

for a step size a > 0, then

]l

ra(x) = I = aHy OOl g S

where | is the identity matrix. For X; # 0, this implies

Kf,d(X;) = ||l - aHd(XJ)”-
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Conditioning of Matrix

The condition number of a square and invertible matrix

A is defined to be

K(A) = [IAIIAT.

When using the Euclidean norm (i.e. || - || = || - ||2).
T max(A)
A — max :
KI( ) amin(A)

If A is singular, we set k(A) = o00.
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Example — Linear System

Given a square and nonsingular matrix A and vector d,
consider solving the linear system Ax = d. This can be

formulated as a minimization problem:
. 2
min ||Ax — d||”.
X

Here x; = A"'d, and so

od
%_J
A=

Thus, k¢(d) < k(A).

lall _

gl

1AXG |l

13

ke(d) = A7 - < A IHIAIL
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Consider solving the problem via gradient descent, i.e.
Ty(x)=x-— aAT(AX - d),

where a > 0 is a step size. Then

Keg(x) = lim sup lp = A" Apl| . [l
: 80" ||p||<5 |l Ix — AT (Ax - d)
_ lr=aA Al Il
[|(I = AT A)x + aATd||’

which implies

[nf,du;) TR ]

and

[ ||Xl|i|rl100 Kra(X) < K (I - ozATA) : ]
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» Both the problem and landscape condition numbers

relate to matrix condition numbers.

» The condition number of the problem is bounded

by the condition number of the matrix A.

» If Ais singular, then K(A) = oo and problem may
not have a unique solution. However, the landscape

can still be “well-behaved” in this case, e.g. consider

A=
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How to (Loosely) Classify Conditioning

» Well-Conditioned

small condition number (e.g. 1, 10, 100)

» IlI-Conditioned

large condition number (e.g. 10°, 10°°)
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Example — Quadratic Function

With scalar data d, consider the problem

: (X1—2d)2 X22
= "3

The solution is xj = (29 0). Letting f; denote the
objective, the gradient is Vf,(x) = x — x}, and the
Hessian H, is the identity matrix. Consider use of

gradient descent with step size equal to one half, /.e.

(x+x3).

N —

Ty(x) =x— %V fa(x) =
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Landscape is Well-Conditioned

Hl ikl
k) = T IR kel

Thus, if x; 2 0, then k7 4(x) = 1. In particular,

lim K¢ q(x) = and lim kfq(x) = 1.

Xox4 2 x|l =00

Problem is lll-Conditioned

od

=In(2) - ¢

A @) ol

d) =
() ‘ A

This implies k¢(d) gets large as d increases, i.e.
lim k¢(d) = oo.
d— o0
lll-conditioned as x; moves far with small change in d.
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Example — Rosenbrock Function

With scalar data d, consider the problem

-(X1—1)2 d(XQ—Xf)z
min=—"5— = )

For each choice of d, the solution is x; = (1,1). Hence

od

d d
| *| =O'_ :O,
(e V2

and so the problem is well-conditioned.

.

ke(d) = ‘

Yet, estimating x; numerically is difficult as d increases. ..
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Here the gradient is

(x,—1) + 2d><1(><12 - X5)
Vfd(X) =
d(x, — X12)

and the Hessian is
1+2d(3x) —x) —2dx
Hq(x) =
—2dX1 d

To show ill-conditioning, it suffices to consider a gradi-
ent descent step at z = (—1,1) with a = 1/2. Here
=2 1+4d 2d

Viy(z) = and Hy(z) =
0] 2d d
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Consequently,

I —aHs()ll - llzll _1+5d V2
Iz —aviy(2)ll 2 1

kra(Z) =
where the approximation holds when d is Iarge.1 Thus,

lim kry(z) = 00.
d—oo '

. . 2
Generally, kf 4(x) is large when d is large and x, = x7,

i.e. the landscape is ill-conditioned in the “valley” about

this curve. The following plots show this “valley” be-

comes narrower and gets steeper sides as d increases.

'The exact formula for [|l—aH4(z)|| is omitted to keep clean presentation.
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Rosenbrock function contours for d = 1. Dot = xj.
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Rosenbrock function contours for d = 10. Dot = x;.
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Rosenbrock function contours for d = 100. Dot = x.
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Well-Conditioned Concepts in Optimization

» Problem Condition Number k¢(d)

small changes in d — small changes in solution xJ

» Landscape Condition Number k¢ 4(x)

small changes in x — small changes in T4(x)

» Matrix Condition Number x(A)

. A . .
the ratio ZmedA) ¢ singular values is small
Um/n(A)
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Found this useful?
<4+ Follow me for more

&% Repost to share with friends
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