
Less Exact Models

can yield

More Exact Solutions

Howard Heaton

4

Typal Academy



Model Approximation

A constrained optimization problem may be written as

min
x

f (x) s.t. x " C, (P)

where f is the objective and C is the constraint. For

various reasons, it is common to approximate (P) by

min
x

f"(x) s.t. x " C", (P")

where f" is an approximation of f and C" an

approximation of C. Ideally, the solution x
ì to (P) is

well-approximated by the solution x
ì
" to (P").
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Algorithm Approximation

Typically, solutions to large optimization problems are

estimated numerically via iterative procedures. For

example, if f is differentiable, projected gradient

constructs a sequence {x k} of solution estimates via

x
k+1 = projC (x � ↵Y f (x)) ,

where ↵ > 0 is a step size and projC is the Euclidean

projection onto C. With suitable assumptions,

lim
k�ô

x
k = x

ì
.

In practice, a finite index K is chosen with x
K ⌅ x

ì.
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Solution Estimate Error

If one uses an approximate model and an approximate

algorithm, then there are two sources of error. That is,

the output x
K
" of an algorithm for solving (P") has

(estimate error) = x
K
" � x

ì

= (xK
" � x

ì
" ) + (xì

" � x
ì)

= (algorithm error) + (model error).
When x

ì is not known, one may consider other factors:

(constraint violation) = dist(xK
" , C) = min

z"C
Ωz � x

K
" Ω

or

(objective suboptimality) = f (xK
" ) � f (xì).
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Example - Earth Mover’s Distance

The earth mover’s distance (EMD) is a key metric that

is widely used in several fields. It measures the

distance between a distribution ⇢0 and ⇢1. In this

example, we let ⇢0 and ⇢1 be cat images.

⇢
0 = Standing Cat ⇢

1 = Crouching Cat
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Example - EMD Formulation

The EMD† can be characterized as the optimal objective

value for the problem

min
x

ΩxΩ1 s.t. div(x) + ⇢1 � ⇢0 = 0,Õ ““““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ — “““““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
C

(P)

where div denotes a linear operation (think “matrix”).

Picking " = 10�10, an approximate version is

min
x

ΩxΩ1 s.t. Ωdiv(x) + ⇢1 � ⇢0 = 0Ω & ".Õ ““““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “—“““““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “œ
C"

(P")

The inequality constraint in (P") changes the structure

of the problem and, thus, what algorithms can be used.

†Specifcally, we use the Wasserstein-1 distance here.
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Example - EMD Algorithms

Primal-dual hybrid gradient (PDHG) solves (P):

Z first-order method with efficient updates

Z converges to optimal solution

Z estimates satisfy constraint asymptotically C

Here “asymptotically” means lim
k�ô

dist(x k
, C) = 0.

Proximal projection (PP) algorithm solves (P"):

Z first-order method with efficient updates

Z converges to optimal solution

Z each estimate x
k
" satisfies constraint C"

Note: PP only works in this setting when " > 0
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Example - Convergence Plots

Violation Ωdiv(x k) + ⇢1 � ⇢0ΩF Objective Ωx
kΩ1
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Observations:

Z PP takes ⇥2.5X as long per step as PDHG

Z PDHG requires orders of magnitude more steps

Z Violation with PP is orders of magnitude lower

Takeaway: PP generates a better estimate of x
ì than

PDHG even though PP solves (P") rather than (P)
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When Inexact can be Better

In the example, the updates for PP are only defined

when " > 0. Thus, picking small " “unlocked” the

ability to use PP for estimating EMDs.

More generally, inexact (P") may be better to use when

Z (P") has “nicer” structure

Z (P") enables circumvention of ill-conditioning and

errors due to floating point arithmetic

Z (P") has parameter " > 0 that for which (P")

becomes (P) as " � 0+

Reference: Proximal Projection Method for Stable

Linearly Constrained Optimization
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Found this useful?

+ Follow for more

� Repost to share with friends
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