Less Exact Models

can yield

More Exact Solutions

Howard Heaton

Model Approximation

A constrained optimization problem may be written as

$$
\min_{x} f(x) \quad \text{s.t.} \quad x \in \mathcal{C}, \tag{P}
$$

where *f* is the objective and *C* is the constraint. For various reasons, it is common to approximate [\(P\)](#page-1-0) by

$$
\min_{x} f_{\varepsilon}(x) \quad \text{s.t.} \quad x \in \mathcal{C}_{\varepsilon}, \tag{P_{\varepsilon}}
$$

where f_{ε} is an approximation of \overline{f} and $\overline{C_{\varepsilon}}$ an approximation of C. Ideally, the solution x^* to [\(P\)](#page-1-0) is well-approximated by the solution x_{ε}^{\star} to $(\mathsf{P}_{\varepsilon}).$

Howard Heaton

Algorithm Approximation

Typically, solutions to large optimization problems are estimated numerically via iterative procedures. For example, if *f* is differentiable, projected gradient constructs a sequence {*x k* } of solution estimates via

$$
x^{k+1} = \text{proj}_{\mathcal{C}}(x - \alpha \nabla f(x)),
$$

where $\alpha > 0$ is a step size and proj_c is the Euclidean projection onto *C*. With suitable assumptions,

$$
\lim_{k \to \infty} x^k = x^*.
$$

In practice, a finite index K is chosen with $x^K \approx x^\star$.

Howard Heaton

Solution Estimate Error

If one uses an approximate model and an approximate algorithm, then there are two sources of error. That is, the output $x_{\varepsilon}^{\mathcal{K}}$ of an algorithm for solving $(\mathsf{P}_{\varepsilon})$ has

(estimate error) = $x_{\varepsilon}^K - x^*$

$$
= \left(x_{\varepsilon}^{\mathsf{K}} - x_{\varepsilon}^{\star}\right) + \left(x_{\varepsilon}^{\star} - x^{\star}\right)
$$

= (algorithm error) + (model error)*.*

When x^* is not known, one may consider other factors:

(constraint violation) = dist(x_{ε}^{K} , C) = $\min_{z \in C} ||z - x_{\varepsilon}^{K}||$

or

(objective suboptimality) = $f(x_{\varepsilon}^{\mathsf{K}}) - f(x^{\star})$.

Howard Heaton

Example - Earth Mover's Distance

The earth mover's distance (EMD) is a key metric that is widely used in several fields. It measures the distance between a distribution ρ^0 and ρ^1 . In this example, we let ρ^0 and ρ^1 be cat images.

 ρ^0 = Standing Cat $\qquad \rho^1$ = Crouching Cat

Howard Heaton

Example - EMD Formulation

The $\overline{\text{EMD}^{\dagger}}$ can be characterized as the optimal objective value for the problem

$$
\min_{x} ||x||_1 \quad \text{s.t.} \quad \underbrace{\text{div}(x) + \rho^1 - \rho^0 = 0}_{C}, \qquad \text{(P)}
$$

where div denotes a linear operation (think "matrix").

Picking $\epsilon = 10^{-10}$, an approximate version is

$$
\min_{x} ||x||_1 \quad \text{s.t.} \quad \underbrace{||\text{div}(x) + \rho^1 - \rho^0 = 0|| \le \varepsilon}_{C_{\varepsilon}} \quad (\mathsf{P}_{\varepsilon})
$$

The inequality constraint in (P_{ϵ}) (P_{ϵ}) changes the structure of the problem and, thus, what algorithms can be used.

Howard Heaton

 † Specifcally, we use the Wasserstein-1 distance here.

Example - EMD Algorithms

Primal-dual hybrid gradient (PDHG) solves (P):

- \triangleright first-order method with efficient updates
- \triangleright converges to optimal solution
- \triangleright estimates satisfy constraint asymptotically $\mathcal C$

Here "asymptotically" means $\lim_{k \to \infty} \text{dist}(x^k, C) = 0.$

Proximal projection (PP) algorithm solves (P_{ε}):

- \triangleright first-order method with efficient updates
- \triangleright converges to optimal solution
- \blacktriangleright each estimate x_{ε}^k satisfies constraint $\mathcal{C}_{\varepsilon}$

Note: PP only works in this setting when $\varepsilon > 0$

Howard Heaton

Example - Convergence Plots

Observations:

- \triangleright PP takes ~2.5X as long per step as PDHG
- \triangleright PDHG requires orders of magnitude more steps
- \triangleright Violation with PP is orders of magnitude lower

Takeaway: PP generates a better estimate of x^* than PDHG even though PP solves (P_{ε}) (P_{ε}) rather than (P)

Howard Heaton

When Inexact can be Better

In the example, the updates for PP are only defined when $\epsilon > 0$. Thus, picking small ϵ "unlocked" the ability to use PP for estimating EMDs.

More generally, inexact (P_{ε}) (P_{ε}) may be better to use when

- \blacktriangleright [\(P](#page-1-1)_{ϵ}) has "nicer" structure
- \blacktriangleright (P_s) enables circumvention of ill-conditioning and errors due to floating point arithmetic
- \blacktriangleright [\(P](#page-1-1)_s) has parameter $\varepsilon > 0$ that for which (P_s) becomes [\(P\)](#page-1-0) as $\varepsilon \to 0^+$

Reference: *[Proximal Projection Method for Stable](https://arxiv.org/pdf/2407.16998)*

[Linearly Constrained Optimization](https://arxiv.org/pdf/2407.16998)

Howard Heaton

Found this useful?

- + Follow for more
- $\frac{1}{2}$ Repost to share with friends

Howard Heaton

