Less Exact Models

can yield

More Exact Solutions

Howard Heaton

Model Approximation

A constrained optimization problem may be written as

$$\min f(x) \quad \text{s.t.} \quad x \in \mathcal{C}, \tag{P}$$

where f is the objective and C is the constraint. For various reasons, it is common to approximate (P) by

$$\min_{x} f_{\varepsilon}(x) \quad \text{s.t.} \quad x \in \mathcal{C}_{\varepsilon}, \qquad (\mathsf{P}_{\varepsilon})$$

where f_{ε} is an approximation of f and C_{ε} an approximation of C. Ideally, the solution x^* to (P) is well-approximated by the solution x_{ε}^* to (P_{ε}).

Algorithm Approximation

Typically, solutions to large optimization problems are estimated numerically via iterative procedures. For example, if f is differentiable, projected gradient constructs a sequence $\{x^k\}$ of solution estimates via

$$x^{k+1} = \operatorname{proj}_{\mathcal{C}} (x - \alpha \nabla f(x)),$$

where $\alpha > 0$ is a step size and $\text{proj}_{\mathcal{C}}$ is the Euclidean projection onto \mathcal{C} . With suitable assumptions,

$$\lim_{k\to\infty} x^k = x^\star.$$

In practice, a finite index K is chosen with $x^{K} \approx x^{\star}$.

Solution Estimate Error

If one uses an approximate model and an approximate algorithm, then there are two sources of error. That is, the output x_{ε}^{K} of an algorithm for solving (P_{ε}) has

(estimate error) = $x_{\varepsilon}^{K} - x^{\star}$

$$= (x_{\varepsilon}^{\mathcal{K}} - x_{\varepsilon}^{\star}) + (x_{\varepsilon}^{\star} - x^{\star})$$

= (algorithm error) + (model error).

When x^* is not known, one may consider other factors:

(constraint violation) = dist(x_{ε}^{K}, C) = $\min_{z \in C} ||z - x_{\varepsilon}^{K}||$

or

(objective suboptimality) = $f(x_{\varepsilon}^{\kappa}) - f(x^{\star})$.

Howard Heaton

Example - Earth Mover's Distance

The earth mover's distance (EMD) is a key metric that is widely used in several fields. It measures the distance between a distribution ρ^0 and ρ^1 . In this example, we let ρ^0 and ρ^1 be cat images.

 ρ^0 = Standing Cat ρ^1 = Crouching Cat

Howard Heaton

Example - EMD Formulation

The EMD[†] can be characterized as the optimal objective value for the problem

$$\min_{x} \|x\|_{1} \quad \text{s.t.} \quad \underbrace{\operatorname{div}(x) + \rho^{1} - \rho^{0} = 0}_{\mathcal{C}}, \qquad (\mathsf{P})$$

where div denotes a linear operation (think "matrix").

Picking $\varepsilon = 10^{-10}$, an approximate version is

$$\min_{x} \|x\|_{1} \quad \text{s.t.} \quad \underbrace{\|\operatorname{div}(x) + \rho^{1} - \rho^{0} = 0\| \le \varepsilon}_{C_{\varepsilon}} \quad (\mathsf{P}_{\varepsilon})$$

The inequality constraint in (P_{ε}) changes the structure of the problem and, thus, what algorithms can be used.

[†]Specifcally, we use the Wasserstein-1 distance here.

Example - EMD Algorithms

Primal-dual hybrid gradient (PDHG) solves (P):

- first-order method with efficient updates
- converges to optimal solution
- estimates satisfy constraint asymptotically C

Here "asymptotically" means $\lim_{k \to \infty} \text{dist}(x^k, C) = 0$.

Proximal projection (PP) algorithm solves (P_{ε}) :

- first-order method with efficient updates
- converges to optimal solution
- ▶ each estimate x_{ε}^{k} satisfies constraint C_{ε}

Note: PP only works in this setting when $\varepsilon > 0$

Howard Heaton

Example - Convergence Plots

Observations:

- PP takes ~2.5X as long per step as PDHG
- PDHG requires orders of magnitude more steps
- Violation with PP is orders of magnitude lower

Takeaway: PP generates a better estimate of x^* than PDHG even though PP solves (P_{ε}) rather than (P)

Howard Heaton

When Inexact can be Better

In the example, the updates for PP are only defined when $\varepsilon > 0$. Thus, picking small ε "unlocked" the ability to use PP for estimating EMDs. More generally, inexact (P_{ε}) may be better to use when

- \triangleright (P_{ε}) has "nicer" structure
- (P_ε) enables circumvention of ill-conditioning and errors due to floating point arithmetic
- ▶ (P_ε) has parameter $\varepsilon > 0$ that for which (P_ε) becomes (P) as $\varepsilon \to 0^+$

Reference: Proximal Projection Method for Stable

Linearly Constrained Optimization

Howard Heaton

Found this useful?

- + Follow for more
- 🔁 Repost to share with friends

