
Adding an Anchor ${\bf \mathring{\psi}}$

can Speed Up Your Algorithm

Howard Heaton

Fixed Point Iteration

Many algorithms can be written using an operator, denoted here by T. Given input x^1 , each update is

$$x^{k+1} = T(x^k).$$

For "nice" operators T, the sequence $\{x^k\}$ converges to a limit x^* for which $x^* = T(x^*)$.

Example: Under standard assumptions, the problem

$\min_{x\in\mathcal{C}}f(x)$

can be solved with the projected gradient operator

$$T(x) = \operatorname{proj}_{\mathcal{C}}(x - \alpha \nabla f(x)),$$

with $\alpha > 0$ a step size and proj_C the projection onto C.

Howard Heaton

Anchoring via Halpern

Given input x^1 , each update for Halpern iteration is[†]

$$x^{k+1} = \frac{1}{n} \cdot x^1 + \left(1 - \frac{1}{n}\right) \cdot T(x^k).$$

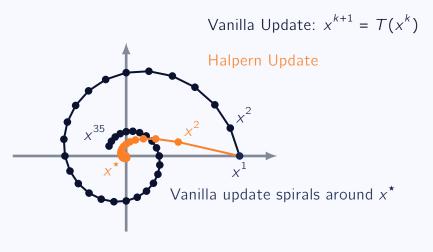
Each update x^{k+1} is an average of x^1 and $T(x^k)$.

Theorem: When T has a fixed point and is "nice,"[‡] the sequence $\{x^k\}$ generated by Halpern converges to a limit x^* for which $x^* = T(x^*)$. Moreover,

$$||x^{k+1} - x^{k}|| = \mathcal{O}(1/k^{2}).$$

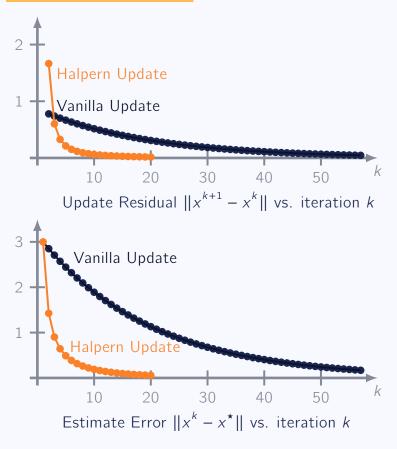
Note: Without anchoring, we may only be able to guarantee O(1/k) rate of convergence.

[†]A special case of a more general formula is shown here. [‡]That is, $||T(x) - T(y)|| \le ||x - y||$ for all x and y


Howard Heaton

Example

Suppose the update operator T is a rotation in the 2D plane by θ that is scaled by $0 < \lambda < 1$, *i.e.*


$$T(x) = \lambda \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Here x^* is the origin.

Howard Heaton

Example Continued

Howard Heaton

Takeaways

Anchoring is trivial to implement
(weighted average with x¹ and T(x^k))

► Anchoring can improve convergence rate (*i.e.* go from O(1/k) to O(1/k²))

- Anchoring can mitigate oscillatory behavior
- ▶ Anchoring is distinct from Nesterov acceleration

Reference: Example drawn from *Exact Optimal* Accelerated Complexity for Fixed-Point Iterations

Howard Heaton

Found this useful?

- + Follow for more
- 🖧 Repost to share with friends

Howard Heaton