End-to-End Learning

with an

Optimization Model

- = constraint
- = objective (analytic)
-] = regularizer (analytic)
- = regularizer (data-driven)

Howard Heaton

Typal Academy 👌

Overview

Setting

Problems where optimization models can be

hand-crafted to roughly estimate solutions,

but could be improved with data.

Model Structure

Model includes prior knowledge (e.g. physical constraints) and include data-driven terms (e.g. parameterized regularizers, convolutions):

(inference) = argmin (prior knowledge)

+ (data-driven terms)

These slides illustrate this via a toy inverse problem. Howard Heaton Typal Academy §

Modeling + Learning

Below is a schematic for building these models.

Howard Heaton

Modeling + Learning

Define Optimization Model

Set inferences $N_{\Theta}(d)$ to be optimizers:

 $N_{\Theta}(d) = \operatorname{argmin} f_{\Theta}(x, d),$

with f parameterized by weights Θ and input data d.

Construct Optimization Algorithm

Use first-order scheme such as gradient descent with

$$x^{k+1} = x^k - \alpha \nabla f_{\Theta}(x^k, d) \text{ so that } N_{\Theta}(d) = \lim_{k \to \infty} x^k.$$

End-to-End Training

Weights Θ are tuned so inferences minimize loss on given data. Mean square error is commonly used: $\min_{\Theta} \mathbb{E}_d \Big[||x_d^* - N_{\Theta}(d)||^2 \Big].$

Howard Heaton

Typal Academy る

Important Training Note

If inferences are computed as $N_{\Theta}(d) = x^n$ for large n,

then one cannot backprop through all *n* iterations!

Problem with Standard Backprop

Memory grows linearly with $n \implies$ memory blow up.

Solution

Only compute loss gradient for step from x^{n-1} to x^n .

Note

This is called "JFB" and is trivial to code in Pytorch.

Howard Heaton

Typal Academy る

Inverse Problem – Example Setup

Task

Recover signal x_d^{\star} from measurements $d = A x_d^{\star}$

Given Information

Linear system $Ax_d^{\star} = d$ is underdetermined Signal x_d^{\star} has low-dimensional structure

Model

If $x_d^* = Mz_d^*$ for a matrix M and low-dimensional z_d^* , there is a square matrix Θ for which Θx_d^* is sparse. Thus, assume $N_{\Theta}(d) \approx x_d^*$, where $N_{\Theta}(d)$ solves $\min_x ||\Theta x||_1$ s.t. Ax = d, where the norm $||\cdot||_1$ is used to make Θx sparse. Howard Heaton

Inverse Problem – Algorithm

 N_{Θ} can be evaluated using linearized ADMM.^{*} Here this uses step sizes α, β, λ , an auxiliary variable p, and dual variables ν and ω . Optimizer estimates x^k are iteratively updated via the batch of updates:[†]

$$p^{k+1} = \operatorname{shrink} \left(p^{k} + \lambda [\nu^{k} + \alpha (\Theta x^{k} - p^{k})], \lambda \right)$$
$$\nu^{k+1} = \nu^{k} + \alpha (\Theta x^{k} - p^{k+1})$$
$$\omega^{k+1} = \omega^{k} + \alpha (Ax^{k} - d)$$
$$x^{k+1} = x^{k} - \beta [\Theta^{\mathsf{T}} (2\nu^{k+1} - \nu^{k}) + A^{\mathsf{T}} (2\omega^{k+1} - \omega^{k})].$$

The inference is $N_{\Theta}(d) = \lim_{k \to \infty} x^k \approx x^n$ for some large *n*.

*See Appendices B and C in my **paper** for derivation details. [†]Note shrink (p, λ) = sign $(p) \cdot \max(0, |p| - \lambda)$.

Howard Heaton

Typal Academy る

Inverse Problem – Training

The tunble weights Θ in the model N_{Θ} form a square matrix. Given pairs $\{(d_n, x_{d_n}^{\star})\}_{n=1}^N$ for training data, optimal Θ^{\star} is found by solving the training problem $\min_{\Theta} \frac{1}{N} \sum_{n=1}^N ||x_{d_n}^{\star} - N_{\Theta}(d_n)||^2$.

Plots below use measurements d drawn from test data.

Howard Heaton

Typal Academy 🧯

Inverse Problem – Plots

Plots show Θ^* multiplied by various estimates of x_d^*

- Inty weath for a start for the second

Ground Truth x_d^{\star}

Least Squares $A^{\top}(AA^{\top})^{-1}d$

Wrong Signal x_p^{\star} with $p \neq d$

Model Infe	rence	N _Θ	(d)
------------	-------	----------------	-----

Estimate	Sparse Transform	Satisfy Constraint
Ground Truth	~	~
Wrong Signal	~	×
Least Squares	×	×
Model Inference	×	×
Howard Heaton		• Typal Academy §

Inverse Problem – Summary

Inference solves optimization problem: $N_{\Theta}(d) = \operatorname{argmin} ||\Theta x||_1$ s.t. Ax = d. Linear system Ax = d is underdetermined \triangleright Learned Θ sparsifies signal x_d^{\star} > Signal x_d^{\star} is not well-approximated via least squares *i.e.* low-rank structure must be exploited

Signal x_d^{\star} is well-approximated by $N_{\Theta}(d)$

Howard Heaton

Typal Academy 👌

Takeaways

When crafting a model N_{Θ} that is defined via an optimization problem and trained as shown:

Model N_O can rigorously capture prior knowledge (*e.g.* hard constraints in physical systems)

Model N_O is evaluated via an optimization algorithm (*e.g.* proximal gradient, ADMM, Davis-Yin splitting)

Model parameters can be tuned for optimal performance on a specific distribution of data

Howard Heaton

Typal Academy 🧯

Found this useful?

- + Follow for more
- 🔁 Repost to share with friends

Howard Heaton

