End-to-End Learning

with an

Optimization Model

- = constraint
- = objective (analytic)
- = regularizer (analytic)
- = regularizer (data-driven)

Howard Heaton

Overview

\blacktriangleright Setting

Problems where optimization models can be hand-crafted to roughly estimate solutions, but could be improved with data.

\blacktriangleright Model Structure

Model includes prior knowledge (e.g. physical constraints) and include data-driven terms (e.g. parameterized regularizers, convolutions): (inference) = argmin (prior knowledge)

+ (data-driven terms)

These slides illustrate this via a toy inverse problem. Howard Heaton Typal Academy 6

Modeling + Learning

Below is a schematic for building these models.

Howard Heaton

Modeling + Learning

Define Optimization Model

Set inferences $N_{\Theta}(d)$ to be optimizers:

 $N_{\Theta}(d)$ = argmin $f_{\Theta}(x, d)$,

with f parameterized by weights Θ and input data d .

 \triangleright Construct Optimization Algorithm

Use first-order scheme such as gradient descent with

$$
x^{k+1} = x^k - \alpha \nabla f_{\Theta}(x^k, d) \text{ so that } N_{\Theta}(d) = \lim_{k \to \infty} x^k.
$$

 \blacktriangleright End-to-End Training

Weights Θ are tuned so inferences minimize loss on given data. Mean square error is commonly used: $\min_{\Theta} \mathbb{E}_d \left[\left\| x_d^{\star} - N_{\Theta}(d) \right\|^2 \right].$

Howard Heaton

Important Training Note

If inferences are computed as $N_{\Theta}(d) = x^{n}$ for large *n*,

then one cannot backprop through all *n* iterations!

Problem with Standard Backprop

Memory grows linearly with $n \implies$ memory blow up.

Solution

Only compute loss gradient for step from x^{n-1} to x^n .

Note

This is called "[JFB"](https://cdn.aaai.org/ojs/20619/20619-13-24632-1-2-20220628.pdf) and is trivial to code in Pytorch.

Howard Heaton

Inverse Problem – Example Setup

 \blacktriangleright Task

Recover signal x_d^{\star} from measurements $d = Ax_d^{\star}$

\blacktriangleright Given Information

Linear system $Ax_d^{\star} = d$ is underdetermined Signal x_d^\star has low-dimensional structure

\blacktriangleright Model

If $x_d^{\star} = Mz_d^{\star}$ for a matrix *M* and low-dimensional z_d^{\star} , there is a square matrix Θ for which $\Theta\mathsf{x}_d^\star$ is sparse. Thus, assume $N_{\Theta}(d) \approx x_d^{\star}$, where $N_{\Theta}(d)$ solves \min_{x} $\|\Theta x\|_1$ s.t. $Ax = d$, where the norm $\|\cdot\|_1$ is used to make Θ *x* sparse. Howard Heaton Typal Academy 6

Inverse Problem – Algorithm

*N*A can be evaluated using linearized ADMM.^{*} Here this uses step sizes α , β , λ , an auxiliary variable p, and dual variables ν and ω . Optimizer estimates x^k are iteratively updated via the batch of updates:[†]

$$
p^{k+1} = \text{shrink}\left(p^k + \lambda[\nu^k + \alpha(\Theta x^k - p^k)], \lambda\right)
$$

$$
\nu^{k+1} = \nu^k + \alpha(\Theta x^k - p^{k+1})
$$

$$
\omega^{k+1} = \omega^k + \alpha(Ax^k - d)
$$

$$
x^{k+1} = x^k - \beta[\Theta^{\top}(2\nu^{k+1} - \nu^k) + A^{\top}(2\omega^{k+1} - \omega^k)].
$$

The inference is $N_{\Theta}(d) = \lim_{k \to \infty} x^k \approx x^n$ for some large *n*.

*See Appendices B and C in my [paper](https://xai-l2o.research.typal.academy/assets/xai-l2o-preprint.pdf) for derivation details. [†]Note shrink $(p, \lambda) = \text{sign}(p) \cdot \text{max}(0, |p| - \lambda)$.

Howard Heaton

Inverse Problem – Training

The tunble weights Θ in the model N_{Θ} form a square matrix. Given pairs $\{(d_n, x_{d_n}^{\star})\}_{n=1}^{N}$ for training data, optimal Θ^* is found by solving the training problem m_{Θ}^{lin} 1 *N N* $\sum_{i=1}^{n}$ $\sum_{n=1} | |x_{d_n}^{\star} - N_{\Theta}(d_n)| |^2$.

Plots below use measurements *d* drawn from *test data*.

Howard Heaton

Inverse Problem – Plots

Plots show Θ^{\star} multiplied by various estimates of x_{d}^{\star}

أعامها فالموارد والمستحقق والمستور

Ground Truth x_d^{\star}

Least Squares *^A*"(*AA*") 1

 \overrightarrow{d} Wrong Signal x_p^{\star} with $p \neq a$

Howard Heaton

Inverse Problem – Summary

 \blacktriangleright Inference solves optimization problem: $N_{\Theta}(d)$ = argmin $\|\Theta x\|_1$ s.t. $Ax = d$. \blacktriangleright Linear system $Ax = d$ is underdetermined \blacktriangleright Learned Θ sparsifies signal x_d^\star \triangleright Signal x_d^{\star} is *not* well-approximated via least squares *i.e.* low-rank structure must be exploited

 \triangleright Signal x_d^* is well-approximated by $N_{\Theta}(d)$

Howard Heaton

Takeaways

When crafting a model *N*⊕ that is defined via an optimization problem and trained as shown:

▶ Model N_→ can rigorously capture prior knowledge (*e.g.* hard constraints in physical systems)

 \triangleright Model N_{Θ} is evaluated via an optimization algorithm (*e.g.* proximal gradient, ADMM, Davis-Yin splitting)

 \triangleright Model parameters can be tuned for optimal performance on a specific distribution of data

Howard Heaton

Found this useful?

- + Follow for more
- $\frac{1}{2}$ Repost to share with friends

Howard Heaton

