
End-to-End Learning

with an

Optimization Model

(inference) = argmin
x "

+ +

= constraint

= objective (analytic)

= regularizer (analytic)

= regularizer (data-driven)
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Overview

Z Setting

Problems where optimization models can be

hand-crafted to roughly estimate solutions,

but could be improved with data.

Z Model Structure

Model includes prior knowledge (e.g. physical

constraints) and include data-driven terms

(e.g. parameterized regularizers, convolutions):

(inference) = argmin (prior knowledge)
+ (data-driven terms)

These slides illustrate this via a toy inverse problem.
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Modeling + Learning

Below is a schematic for building these models.

argmin
x "

+ +

Model Formulation

= constraint

= objective (analytic)

= regularizer (analytic)

= regularizer (data-driven)

d
x k xô

Fixed Point Iteration

Model Inference

d N⇥(d)

Choose

Algorithm

Train
Model
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Modeling + Learning

Z Define Optimization Model

Set inferences N⇥(d) to be optimizers:

N⇥(d) = argmin
x

f⇥(x , d),
with f parameterized by weights ⇥ and input data d .

Z Construct Optimization Algorithm

Use first-order scheme such as gradient descent with

x k+1 = x k � ↵Y f⇥(x k
, d) so that N⇥(d) = lim

k�ô
x k
.

Z End-to-End Training

Weights ⇥ are tuned so inferences minimize loss on

given data. Mean square error is commonly used:

min
⇥
Ed Ωxì

d � N⇥(d)Ω2⇢ .
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Important Training Note

If inferences are computed as N⇥(d) = x n for large n,

then one cannot backprop through all n iterations!

Problem with Standard Backprop

Memory grows linearly with n º memory blow up.

Solution

Only compute loss gradient for step from x n�1 to x n.

Note

This is called “JFB” and is trivial to code in Pytorch.
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Inverse Problem – Example Setup

Z Task

Recover signal xì
d from measurements d = Axì

d

Z Given Information

Linear system Axì
d = d is underdetermined

Signal xì
d has low-dimensional structure

Z Model

If xì
d = Mzì

d for a matrix M and low-dimensional zì
d ,

there is a square matrix ⇥ for which ⇥xì
d is sparse.

Thus, assume N⇥(d) ⌅ xì
d , where N⇥(d) solves

min
x

Ω⇥xΩ1 s.t. Ax = d ,

where the norm Ω � Ω1 is used to make ⇥x sparse.
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Inverse Problem – Algorithm

N⇥ can be evaluated using linearized ADMM.∗ Here this

uses step sizes ↵, �, �, an auxiliary variable p, and dual

variables ⌫ and !. Optimizer estimates x k are iteratively

updated via the batch of updates:†

pk+1 = shrink ⇥pk + �[⌫k + ↵(⇥x k � pk)], ��
⌫

k+1 = ⌫k + ↵(⇥x k � pk+1)
!

k+1 = !k + ↵(Ax k � d)
x k+1 = x k � �[⇥„(2⌫k+1 � ⌫k) + A„(2!k+1 � !k)].

The inference is N⇥(d) = lim
k�ô

x k ⌅ x n for some large n.

∗See Appendices B and C in my paper for derivation details.
†Note shrink(p, �) = sign(p) � max(0, ∂p∂ � �).
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Inverse Problem – Training

The tunble weights ⇥ in the model N⇥ form a square

matrix. Given pairs {(dn, x
ì
dn)}N

n=1 for training data,

optimal ⇥ì is found by solving the training problem

min
⇥

1
N

N

=
n=1

Ωxì
dn � N⇥(dn)Ω2

.

Plots below use measurements d drawn from test data.

True Signal xì
d Sparsified Signal ⇥xì

d

This shows optimal ⇥ì yields sparse ⇥xì
d , as desired.
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Inverse Problem – Plots

Plots show ⇥ì multiplied by various estimates of xì
d

Ground Truth xì
d Wrong Signal xì

p with p j d

Least Squares A„(AA„)�1d Model Inference N⇥(d)
Estimate Sparse Transform Satisfy Constraint

Ground Truth � �

Wrong Signal � �

Least Squares � �

Model Inference � �
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Inverse Problem – Summary

Z Inference solves optimization problem:

N⇥(d) = argmin
x

Ω⇥xΩ1 s.t. Ax = d .

Z Linear system Ax = d is underdetermined

Z Learned ⇥ sparsifies signal xì
d

Z Signal xì
d is not well-approximated via least squares

i.e. low-rank structure must be exploited

Z Signal xì
d is well-approximated by N⇥(d)
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Takeaways

When crafting a model N⇥ that is defined via an

optimization problem and trained as shown:

Z Model N⇥ can rigorously capture prior knowledge

(e.g. hard constraints in physical systems)

Z Model N⇥ is evaluated via an optimization algorithm

(e.g. proximal gradient, ADMM, Davis-Yin splitting)

Z Model parameters can be tuned for optimal

performance on a specific distribution of data
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Found this useful?

+ Follow for more

� Repost to share with friends
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