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What is an Inverse Problem?

Key Terms

• forward operator G

• parameters x

•measurement data d

•mathematical model G (x) = d

Forward Problem

Use G to compute d from x

Inverse Problem

Use G to compute x from d

x
d

Forward Problem

Inverse Problem
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Examples

A short list of inverse problems:

• Super Resolution Imaging

•Vertical Seismic Profiling

•X-ray Computed Tomography

• Electrical Resistivity Tomography

(See appendix for more details)
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Hadamard’s Properties

•Existence – Problem has a solution

•Uniqueness – There is at most one solution

• Stability – Solution changes continuously with data

Well-Posed ø Above 3 Properties Hold

Ill-Posed ø Not Well-Posed

parameters data

?

Existence

Uniqueness

Stability
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Toy Examples – Existence and Uniqueness
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Toy Example – Stability

G (x) =
~ÑÑÑÑÑÑÑÑÑÑÑÇÑÑÑÑÑÑÑÑÑÑÑÄ

x if 0 & x & 1

x + 1 if 1 < x & 2

x � 1 if 2 < x & 3
x

d

d = 1

1

1

2

2

3

3
G (x)

Inverse problem is instable as G�1 is discontinuous at d = 1, i.e.

lim
"�0+

G�1(1 + ") = lim
"�0+

2 + " = 2 j 1 = G�1(1)
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Condition Numbers

The relative condition number for a well-posed inverse problem is

(d) = lim
��0+

supΩpΩ&�
ΩG�1(d + p) � G�1(d)ΩΩG�1(d)Ω ÆΩpΩΩdΩ

This is a limit of the supremum over all infinitesimal perturbations p

If G�1 is differentiable, then

(d) = ¬¬¬¬¬¬¬¬¬
@G�1(d)
@d

¬¬¬¬¬¬¬¬¬ �
ΩdΩΩG�1(d)Ω

If G is linear, then (d) = ΩGΩ � ΩG�1Ω � ΩdΩ = �max (G )
�min(G ) � ΩdΩ
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Ill-Conditioned Problems

Problem is well-conditioned provided (d) is small and ill-conditioned otherwise

To illustrate, consider a well-posed linear problem with

G = ⌫ 1 1

1 1 + "
� and d = ⌫ 1

1
� º (d) ⌅ 4 + "

" �
”

2 when " is small

With small ", small changes in d yield large changes in x º ill-conditioned

G�1 ⇧⌫ 1

1
�↵ = ⌫ 1

0
� and G�1 ⌅� 1 + "

1 ⌧⌦ = � 2 + "
�1 ⌧
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Why Inverse Problems are Hard

Inverse problems in the wild are often ill-posed and/or ill-conditioned

To address this, practitioners reformulate the problem in various ways:

•No solution? Weaken hard constraint G (x) = d

•Not unique? Embed more prior knowledge (e.g. sparsity, minimal norm)

• Instable or ill-conditioned? Introduce more regularization or “convexify”
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Regularization

Regularizers are used to define a well-posed and well-conditioned optimization

problem as a surrogate for the hard inverse problem; namely, one assumes

x ⌅ argmin
z

�data misfit⌥ + �regularizer⌥
Data Misfit: Closeness measurement of G (z) and d , e.g. ΩG (z) � dΩ2

2

Regularizer: A regularizer can take the form of a Tikhonov term ΩLzΩ2
2,

`1 norm ΩzΩ1, total variation ΩYzΩ1, nonnegativity constraint, and more
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Algorithmic Challenges

Distinct problems may require different algorithms to compute solutions,

which have varying characteristics with respect to meeting

•Time constraints (e.g. need to compute solutions in milliseconds, hours)

•Memory constraints (e.g. avoiding Hessian if x is high dimensional)

•Output tolerances∗ (e.g. ΩG (x) � dΩ & ")

∗Algorithm may create a sequence of solution estimates that satisfy hard constraints
of surrogate model for each estimate or only asymptotically
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Example – Sparse Recovery

Consider recovery of sparse x from noisy linear measurements d = Ax + "

Multiple optimization problems can used as surrogates:

x ⌅ argmin
z

1
2ΩAz � dΩ2

2 + �ΩzΩ1 (LASSO)

x ⌅ argmin
z

ΩzΩ1 s.t. ΩAz � dΩ & � (BPDN)

LASSO can be solved via proximal gradient and BPDN via ADMM

Surrogate model influences algorithm influences performance guarantees
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Summary

Several factors can make inverse problems hard to solve

• Inverse problems are often ill-posed and/or ill-conditioned

•Well-posed surrogates must be carefully crafted with G and prior knowledge

•Various constraints may be imposed on algorithms for computing solutions
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Appendix
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Appendix – Super Resolution Imaging

Inverse Problem: Estimate high-resolution image from low-resolution image

Let x and d be vectorizations of the high and low resolution images, respectively

One simple model makes the estimate

x ⌅ argmin
z

ΩDz � dΩ2
2 + �ΩYzΩ1

with � > 0 a regularization parameter, D a linear downsampling operator andY

a discrete differencing operator
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Appendix – Vertical Seismic Profiling

Source of seismic waves is at surface and arrival times are measured in borehole

Travel time u(x , z) of seismic wave to a point (x , z) satisfies Eikonal equation

~ÑÑÑÇÑÑÑÄ
ΩYuΩ = 1

v in ⌦

u = q on @⌦

with ⌦ L R2 the subsurface region, v (x , z) the seismic velocity and

q(x , z) the travel time on the surface @⌦

Inverse Problem: Estimate subsurface velocity v via observed travel times
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Appendix – X-ray Computed Tomography

X-rays attentuations by different portions of an object are measured

(i -th measurement) = di = E
Ci

x ds ⌅ =
j

Aijxj ,

with xj the value for the j -th voxel in a discretization of the continuous object

and Aij the length of the i -th ray path through the j -th voxel

Inverse Problem: Recover image x from X-ray attentuation measurements d

For a tolerance " > 0, one way to estimate x is via

x ⌅ argmin
z'0

ΩYzΩ1 s.t. ΩAz � dΩ & "
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Appendix – Electrical Resistivity Tomography

For subsurface region ⌦ L R3 with conductivity �⇥⌦ � R and injected current I ,

electric potential �⇥⌦ � R satisfies

~ÑÑÑÇÑÑÑÄ
Y� �Y� = I � in ⌦

Y� � n = 0 on @⌦

with n the normal vector at the surface @⌦ and � a Dirac delta function

Inverse Problem: Recover � from surface measurements of potential difference
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