

What is an Inverse Problem?

Key Terms

- forward operator *G*
- parameters *x*
- measurement data *d*
- mathematical model $G(x) = d$

Forward Problem

Use *G* to compute *d* from *x*

Inverse Problem

Use *G* to compute *x* from *d*

Forward Problem

Inverse Problem

Examples

Hadamard's Properties

• Existence – Problem has a solution

• Uniqueness – There is at most one solution

• Stability – Solution changes continuously with data

Well-Posed \iff Above 3 Properties Hold $III-Posed \iff$ Not Well-Posed

Toy Examples – Existence and Uniqueness

Toy Example - Stability

Inverse problem is instable as G^{-1} is discontinuous at $d = 1$, *i.e.*

$$
\lim_{\varepsilon \to 0^+} G^{-1}(1 + \varepsilon) = \lim_{\varepsilon \to 0^+} 2 + \varepsilon = 2 \neq 1 = G^{-1}(1)
$$

Condition Numbers

The relative condition number for a well-posed inverse problem is

$$
\kappa(d) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|G^{-1}(d+p) - G^{-1}(d)\|}{\|G^{-1}(d)\|} / \frac{\|p\|}{\|d\|}
$$

This is a limit of the supremum over all infinitesimal perturbations *p*

If G^{-1} is differentiable, then

$$
\kappa(d) = \left\| \frac{\partial G^{-1}(d)}{\partial d} \right\| \cdot \frac{\|d\|}{\|G^{-1}(d)\|}
$$

If *G* is linear, then $\kappa(d) = ||G|| \cdot ||G^{-1}|| \cdot ||d|| = \frac{\sigma_{max}(G)}{\sigma_{min}(G)} \cdot ||d||$

Ill-Conditioned Problems

Problem is well-conditioned provided $\kappa(d)$ is small and ill-conditioned otherwise

To illustrate, consider a well-posed linear problem with

$$
G = \begin{bmatrix} 1 & 1 \\ 1 & 1 + \varepsilon \end{bmatrix}
$$
 and $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \implies $\kappa(d) \approx \frac{4 + \varepsilon}{\varepsilon} \cdot \sqrt{2}$ when ε is small

With small ε , small changes in *d* yield large changes in $x \implies$ ill-conditioned

$$
G^{-1}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right]\right) = \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \quad \text{and} \quad G^{-1}\left(\left[\begin{array}{c} 1+\varepsilon \\ 1 \end{array}\right]\right) = \left[\begin{array}{c} 2+\varepsilon \\ -1 \end{array}\right]
$$

Inverse problems in the wild are often ill-posed and/or ill-conditioned

To address this, practitioners reformulate the problem in various ways:

• No solution? Weaken hard constraint *G*(*x*) = *d*

• Not unique? Embed more prior knowledge (*e.g.* sparsity, minimal norm)

• Instable or ill-conditioned? Introduce more regularization or "convexify"

Regularizers are used to define a well-posed and well-conditioned optimization

problem as a surrogate for the hard inverse problem; namely, one assumes

 $x \approx \operatornamewithlimits{argmin}\limits_z \big(\text{data misfit}\big) + \big(\text{regularizer}\big)$

Data Misfit: Closeness measurement of *G*(*z*) and *d*, *e.g.* $||G(z) - d||_2^2$

Regularizer: A regularizer can take the form of a Tikhonov term $||Lz||_2^2$,

 ℓ_1 norm $||z||_1$, total variation $||\nabla z||_1$, nonnegativity constraint, and more

Distinct problems may require different algorithms to compute solutions,

which have varying characteristics with respect to meeting

- Time constraints (*e.g.* need to compute solutions in milliseconds, hours)
- Memory constraints (*e.g.* avoiding Hessian if *x* is high dimensional)
- Output tolerances^{*} (*e.g.* $||G(x) d|| \leq \varepsilon$)

[∗] Algorithm may create a sequence of solution estimates that satisfy hard constraints of surrogate model for each estimate or only asymptotically

Example – Sparse Recovery

Consider recovery of sparse x from noisy linear measurements $d = Ax + \varepsilon$

Multiple optimization problems can used as surrogates:

$$
x \approx \underset{z}{\arg\min} \frac{1}{2} ||Az - d||_2^2 + \lambda ||z||_1
$$
 (LASSO)

$$
x \approx \underset{z}{\arg\min} ||z||_1 \quad \text{s.t.} \quad ||Az - d|| \le \delta
$$
 (BPDN)

LASSO can be solved via proximal gradient and BPDN via ADMM

Surrogate model influences algorithm influences performance guarantees

Several factors can make inverse problems hard to solve

• Inverse problems are often ill-posed and/or ill-conditioned

•Well-posed surrogates must be carefully crafted with *G* and prior knowledge

•Various constraints may be imposed on algorithms for computing solutions

Appendix

Appendix – Super Resolution Imaging

Inverse Problem: Estimate high-resolution image from low-resolution image

Let *x* and *d* be vectorizations of the high and low resolution images, respectively One simple model makes the estimate

$$
x \approx \underset{z}{\text{argmin}} \ \|Dz - d\|_2^2 + \lambda \|\nabla z\|_1
$$

with $\lambda > 0$ a regularization parameter, D a linear downsampling operator and ∇

a discrete differencing operator

Source of seismic waves is at surface and arrival times are measured in borehole

Travel time $u(x, z)$ of seismic wave to a point (x, z) satisfies Eikonal equation

 $\overline{}$ $\|\nabla u\| = \frac{1}{v}$ in Ω $u = q$ on $\partial \Omega$

with $\Omega \subset \mathbb{R}^2$ the subsurface region, $v(x, z)$ the seismic velocity and

 $q(x, z)$ the travel time on the surface $\partial\Omega$

Inverse Problem: Estimate subsurface velocity *v* via observed travel times

Appendix – X-ray Computed Tomography

X-rays attentuations by different portions of an object are measured

(*i*-th measurement) =
$$
d_i
$$
 = $\int_{C_i} x \, ds \approx \sum_j A_{ij} x_j$,

with *x^j* the value for the *j*-th voxel in a discretization of the continuous object

and *Aij* the length of the *i*-th ray path through the *j*-th voxel

Inverse Problem: Recover image *x* from X-ray attentuation measurements *d*

For a tolerance $\varepsilon > 0$, one way to estimate x is via

$$
x \approx \underset{z \ge 0}{\text{argmin}} \|\nabla z\|_1 \quad \text{s.t.} \quad \|Az - d\| \le \varepsilon
$$

Appendix - Electrical Resistivity Tomography

For subsurface region $\Omega \subset \mathbb{R}^3$ with conductivity $\sigma : \Omega \to \mathbb{R}$ and injected current *l*,

electric potential $\phi \colon \Omega \to \mathbb{R}$ satisfies

 $\begin{cases} \nabla \cdot \sigma \nabla \phi = I \delta & \text{in } \Omega \\ \nabla \phi \cdot n = 0 & \text{on } \partial \Omega \end{cases}$

with *n* the normal vector at the surface $\partial\Omega$ and δ a Dirac delta function

Inverse Problem: Recover σ from surface measurements of potential difference