Why Inverse Problems are Hard
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What is an Inverse Problem?

Key Terms

e forward operator G
® parameters x
°* measurement data d

e mathematical model G(x) = d

Forward Problem

Use G to compute d from x

Inverse Problem

Use G to compute x from d

Forward Problem
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Inverse Problem




SEDIES
A short list of inverse problems:
e Super Resolution Imaging
e Vertical Seismic Profiling =  —»

e X-ray Computed Tomography

e Electrical Resistivity Tomography

(See appendix for more details)



Hadamard’s Properties Existence

e Existence — Problem has a solution

e Uniqueness — There is at most one solution
parameters data

* Stability — Solution changes continuously with data

Well-Posed <<= Above 3 Properties Hold

[ll-Posed <= Not Well-Posed




Toy Examples — Existence and Uniqueness
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solution does not exist
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solutions are not unique



Toy Example — Stability
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X ifo0<x<1 C/ G(x)
2 4 /

G(X)=9 x+1 ifl<x<?2

x—1 if2<x=<3 ; ; e

.. -1 . . . .
Inverse problem is instable as G~ is discontinuous at d =1, /.e.

lim G ' (1+¢e)=lim2+e=2%1=G '(1)
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Condition Numbers

The relative condition number for a well-posed inverse problem is

. 1672 (d+p) = G/ lIol
k(d) = lim sup
(d) = fim sup G5 (@] 1l

This is a limit of the supremum over all infinitesimal perturbations p

If G! is differentiable, then

w(d) = ||aG <d>|| [l

G- (d)l

If G is linear, then k(d) = |G| - [|G7*| - ||d]| = ‘;m—((g)) |



llI-Conditioned Problems

Problem is well-conditioned provided (d) is small and ill-conditioned otherwise

To illustrate, consider a well-posed linear problem with

1 1 1 A
G = and d = = k(d) = E°\/§ when ¢ is small
1 1+¢ 1 €

With small €, small changes in d yield large changes in x = ill-conditioned
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Why Inverse Problems are Hard

Inverse problems in the wild are often ill-posed and/or ill-conditioned

To address this, practitioners reformulate the problem in various ways:
* No solution? Weaken hard constraint G(x) = d
* Not unique? Embed more prior knowledge (e.g. sparsity, minimal norm)

e Instable or ill-conditioned? Introduce more regularization or “convexify”



Regularization

Regularizers are used to define a well-posed and well-conditioned optimization

problem as a surrogate for the hard inverse problem; namely, one assumes

x ~ argmin (data misfit) + (regularizer)

Z

Data Misfit: Closeness measurement of G(z) and d, e.q. ||G(z) = d||3

Regularizer: A regularizer can take the form of a Tikhonov term ||Lz||3,

£, norm ||z||;, total variation || V z||1, nonnegativity constraint, and more



Algorithmic Challenges

Distinct problems may require different algorithms to compute solutions,

which have varying characteristics with respect to meeting
* Time constraints (e.g. need to compute solutions in milliseconds, hours)
* Memory constraints (e.g. avoiding Hessian if x is high dimensional)

e Output tolerances” (e.g. ||G(x) — d|| < ¢€)

*Algorithm may create a sequence of solution estimates that satisfy hard constraints
of surrogate model for each estimate or only asymptotically



Example — Sparse Recovery

Consider recovery of sparse x from noisy linear measurements d = Ax + €

Multiple optimization problems can used as surrogates:

X
Q

1
argmin §||Az—d||§+>\||z||1 (LASSO)

X
QR

argmin ||z]|; s.t. ||[Az-d| <6 (BPDN)

LASSO can be solved via proximal gradient and BPDN via ADMM

Surrogate model influences algorithm influences performance guarantees




Summary

Several factors can make inverse problems hard to solve
* Inverse problems are often ill-posed and/or ill-conditioned
* Well-posed surrogates must be carefully crafted with G and prior knowledge

e Various constraints may be imposed on algorithms for computing solutions



Appendix



Appendix — Super Resolution Imaging

Inverse Problem: Estimate high-resolution image from low-resolution image

Let x and d be vectorizations of the high and low resolution images, respectively

One simple model makes the estimate
x ~ argmin ||Dz = d||5 + ||V z||;
z

with A > 0 a regularization parameter, D a linear downsampling operator and V

a discrete differencing operator



Appendix — Vertical Seismic Profiling

Source of seismic waves is at surface and arrival times are measured in borehole

Travel time u(x, z) of seismic wave to a point (x, z) satisfies Eikonal equation

|| v ul| % in Q

g on 0f2

u

with  c R? the subsurface region, v(x, z) the seismic velocity and

q(x, z) the travel time on the surface 692

Inverse Problem: Estimate subsurface velocity v via observed travel times




Appendix — X-ray Computed Tomography

X-rays attentuations by different portions of an object are measured
(i-th measurement) = d; = [ x ds = ZAUXJ-,
C 7
with x; the value for the j-th voxel in a discretization of the continuous object

and Aj the length of the /-th ray path through the j-th voxel

Inverse Problem: Recover image x from X-ray attentuation measurements d

For a tolerance € > 0, one way to estimate x is via

x =argmin ||V z||; st ||[Az-d| s¢

z20



Appendix — Electrical Resistivity Tomography

For subsurface region Q C R> with conductivity 0: Q — R and injected current /,

electric potential ¢: Q — R satisfies

V:oaVp=10 inQ
Vo-n=0 on 90N

with n the normal vector at the surface 92 and § a Dirac delta function

Inverse Problem: Recover o from surface measurements of potential difference




