

Howard Heaton

What is an Inverse Problem?

Key Terms

- forward operator G
- parameters x
- measurement data d
- mathematical model G(x) = d

Forward Problem

Use G to compute d from x

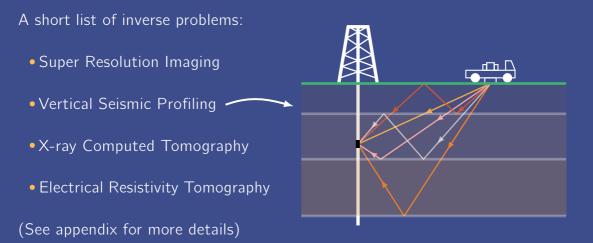
Inverse Problem

Use G to compute x from d

Forward Problem

Inverse Problem

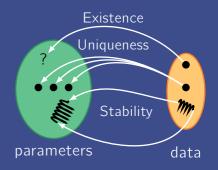
Examples



Hadamard's Properties

• Existence – Problem has a solution

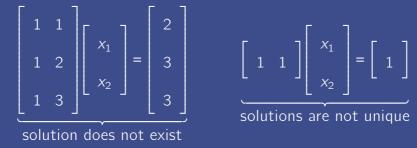
• Uniqueness – There is at most one solution

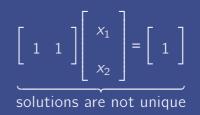


• Stability – Solution changes continuously with data

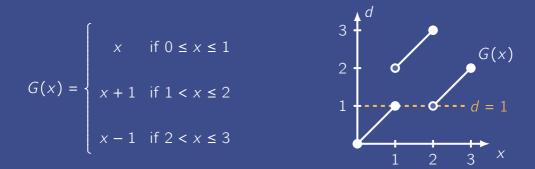
Well-Posed ↔ Above 3 Properties Hold III-Posed ↔ Not Well-Posed

Toy Examples – Existence and Uniqueness





Toy Example – Stability



Inverse problem is instable as G^{-1} is discontinuous at d = 1, *i.e.*

$$\lim_{\varepsilon \to 0^+} G^{-1}(1+\varepsilon) = \lim_{\varepsilon \to 0^+} 2 + \varepsilon = 2 \neq 1 = G^{-1}(1)$$

Condition Numbers

The relative condition number for a well-posed inverse problem is

$$\kappa(d) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|G^{-1}(d+p) - G^{-1}(d)\|}{\|G^{-1}(d)\|} / \frac{\|p\|}{\|d\|}$$

This is a limit of the supremum over all infinitesimal perturbations p

If G^{-1} is differentiable, then

$$\kappa(d) = \left\| \frac{\partial G^{-1}(d)}{\partial d} \right\| \cdot \frac{\|d\|}{\|G^{-1}(d)\|}$$

If G is linear, then $\kappa(d) = ||G|| \cdot ||G^{-1}|| \cdot ||d|| = \frac{\sigma_{max}(G)}{\sigma_{min}(G)} \cdot ||d||$

III-Conditioned Problems

Problem is well-conditioned provided $\kappa(d)$ is small and ill-conditioned otherwise

To illustrate, consider a well-posed linear problem with

$$G = \begin{bmatrix} 1 & 1 \\ 1 & 1 + \varepsilon \end{bmatrix} \text{ and } d = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies \kappa(d) \approx \frac{4 + \varepsilon}{\varepsilon} \cdot \sqrt{2} \text{ when } \varepsilon \text{ is small}$$

With small ε , small changes in d yield large changes in $x \implies$ ill-conditioned

$$G^{-1}\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\0\end{array}\right] \text{ and } G^{-1}\left(\left[\begin{array}{c}1+\varepsilon\\1\end{array}\right]\right) = \left[\begin{array}{c}2+\varepsilon\\-1\end{array}\right]$$

Inverse problems in the wild are often ill-posed and/or ill-conditioned

To address this, practitioners reformulate the problem in various ways:

• No solution? Weaken hard constraint G(x) = d

• Not unique? Embed more prior knowledge (*e.g.* sparsity, minimal norm)

• Instable or ill-conditioned? Introduce more regularization or "convexify"

Regularizers are used to define a well-posed and well-conditioned optimization

problem as a surrogate for the hard inverse problem; namely, one assumes

 $x \approx \operatorname{argmin}_{z} (\operatorname{data misfit}) + (\operatorname{regularizer})$

Data Misfit: Closeness measurement of G(z) and d, e.g. $||G(z) - d||_2^2$

Regularizer: A regularizer can take the form of a Tikhonov term $||Lz||_2^2$,

 ℓ_1 norm $||z||_1$, total variation $||\nabla z||_1$, nonnegativity constraint, and more

Algorithmic Challenges

Distinct problems may require different algorithms to compute solutions,

which have varying characteristics with respect to meeting

- Time constraints (*e.g.* need to compute solutions in milliseconds, hours)
- Memory constraints (e.g. avoiding Hessian if x is high dimensional)
- Output tolerances^{*} $(e.g. ||G(x) d|| \le \varepsilon)$

^{*}Algorithm may create a sequence of solution estimates that satisfy hard constraints of surrogate model for each estimate or only asymptotically

Example – Sparse Recovery

Consider recovery of sparse x from noisy linear measurements $d = Ax + \varepsilon$

Multiple optimization problems can used as surrogates:

$$x \approx \underset{z}{\operatorname{argmin}} \frac{1}{2} ||Az - d||_{2}^{2} + \lambda ||z||_{1}$$
 (LASSO)

$$x \approx \underset{z}{\operatorname{argmin}} ||z||_1 \quad \text{s.t.} \quad ||Az - d|| \le \delta$$
 (BPDN)

LASSO can be solved via proximal gradient and BPDN via ADMM

Surrogate model influences algorithm influences performance guarantees

Several factors can make inverse problems hard to solve

• Inverse problems are often ill-posed and/or ill-conditioned

• Well-posed surrogates must be carefully crafted with G and prior knowledge

• Various constraints may be imposed on algorithms for computing solutions

Appendix

Appendix – Super Resolution Imaging

Inverse Problem: Estimate high-resolution image from low-resolution image

Let x and d be vectorizations of the high and low resolution images, respectively One simple model makes the estimate

$$x \approx \underset{z}{\operatorname{argmin}} \|Dz - d\|_{2}^{2} + \lambda \|\nabla z\|_{1}$$

with $\lambda > 0$ a regularization parameter, D a linear downsampling operator and ∇

a discrete differencing operator

Appendix – Vertical Seismic Profiling

Source of seismic waves is at surface and arrival times are measured in borehole

Travel time u(x, z) of seismic wave to a point (x, z) satisfies Eikonal equation

 $\begin{cases} || \nabla u || = \frac{1}{v} \text{ in } \Omega \\ u = q \text{ on } \partial \Omega \end{cases}$

with $\Omega \subset \mathbb{R}^2$ the subsurface region, v(x, z) the seismic velocity and

q(x, z) the travel time on the surface $\partial \Omega$

Inverse Problem: Estimate subsurface velocity v via observed travel times

Appendix – X-ray Computed Tomography

X-rays attentuations by different portions of an object are measured

(*i*-th measurement) =
$$d_i = \int_{C_i} x \, \mathrm{d}s \approx \sum_i A_{ij} x_j$$
,

with x_i the value for the *j*-th voxel in a discretization of the continuous object

and A_{ij} the length of the *i*-th ray path through the *j*-th voxel

Inverse Problem: Recover image x from X-ray attentuation measurements d

For a tolerance $\varepsilon > 0$, one way to estimate x is via $x \approx \underset{z>0}{\operatorname{argmin}} \|\nabla z\|_1 \quad \text{s.t.} \quad \|Az - d\| \le \varepsilon$

Appendix – Electrical Resistivity Tomography

For subsurface region $\Omega \subset \mathbb{R}^3$ with conductivity $\sigma: \Omega \to \mathbb{R}$ and injected current *I*,

electric potential $\phi: \Omega \to \mathbb{R}$ satisfies

 $\begin{cases} \nabla \cdot \sigma \nabla \phi = I\delta \quad \text{in } \Omega \\ \nabla \phi \cdot n = 0 \quad \text{on } \partial \Omega \end{cases}$

with *n* the normal vector at the surface $\partial \Omega$ and δ a Dirac delta function

Inverse Problem: Recover σ from surface measurements of potential difference