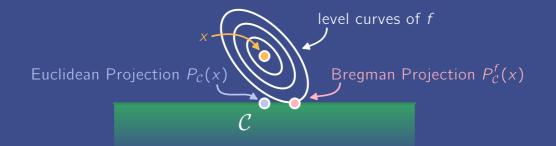
Bregman Divergences

A natural way to measure closeness



Howard Heaton

Typal Academy 👌

Motivation

Optimization algorithms should respect problem geometry

Standard algorithms (e.g. proximal gradient) use Euclidean geometry

These slides describe how to use a function f for various geometries

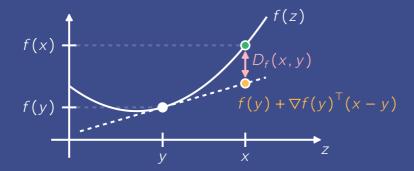
Note: We assume f is strictly convex, proper, and differentiable in its domain

Definition

The Bregman divergence D_f associated with f is given by

$$D_f(x, y) = f(x) - f(y) - \nabla f(y)^\top (x - y)$$

i.e. difference between function value at x and a linear estimate from y to x



Area View of Bregman Divergence

In one dimension, this divergence can be represented as an area:

V

Area() =
$$D_f(x, y) = \int_y^x f'(z) dz - f'(y)(x - y)$$

 $f'(x)$
 $f'(y)$
 $f'(y)$

Key Properties

• Convexity: $D_f(x, y)$ is convex in x when y is fixed

- Positivity: $D_f(x, y) \ge 0$ with equality if and only if x = y
- Asymmetry: possible to have $D_f(x, y) \neq D_f(y, x)$

If *M* is a positive definite matrix and $f(x) = \frac{1}{2} ||x||_M^2 = \frac{1}{2} x^T M x$, then

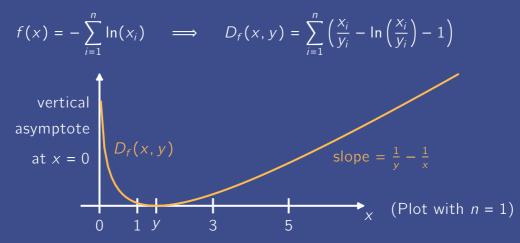
$$D_{f}(x, y) = \frac{1}{2}x^{\top}Mx - \frac{1}{2}y^{\top}My - (My)^{\top}(x - y)$$
$$= \frac{1}{2}(x - y)^{\top}M(x - y)$$
$$= \frac{1}{2}||x - y||_{M}^{2}$$

Special Case: If M = I, Bregman divergence equals Euclidean distance squared,

i.e.
$$D_f(x, y) = \frac{1}{2} ||x - y||^2$$

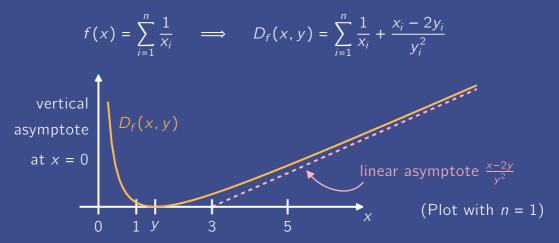
Example – Logarithmic Barrier

The logarithmic barrier uses $f:(0,\infty)^n \to \mathbb{R}$ given by



Example – Inverse Barrier

The inverse barrier uses $f:(0,\infty)^n \to \mathbb{R}$ given by

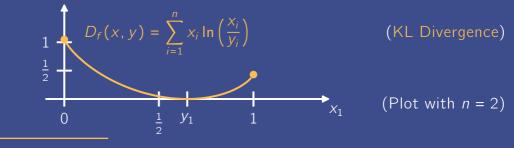


Example – KL Divergence

The negative entropy function $f:(0,\infty)^n \to \mathbb{R}$ is given by

$$f(x) = \sum_{i=1}^{n} x_i \ln(x_i)$$
 (Negative Entropy)

If x and y are in the unit simplex with $y_i > 0$ for each i, then^T

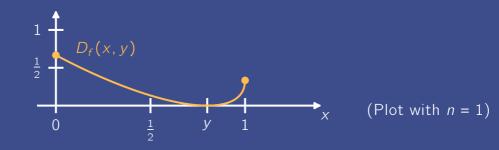


[†]We adopt the convention 0 ln(0) = 0

Example – Divergence with Square Root

Consider the divergence using $f: [0, 1]^n \to \mathbb{R}$ given by

$$f(x) = -\sum_{i=1}^{n} \sqrt{1 - x_i^2} \implies D_f(x, y) = \sum_{i=1}^{n} \left(-\sqrt{1 - x_i^2} + \frac{1 - x_i y_i}{\sqrt{1 - y_i^2}} \right)$$



Bregman Projection

If $\mathcal C$ is a closed, convex, and nonempty set, then the Bregman projection

 $P_{\mathcal{C}}^{f}(x) = \operatorname*{argmin}_{z \in \mathcal{C}} D_{f}(z, x)$

exists and is unique

Euclidean Projection $P_c(x)$ Clevel curves of fBregman Projection $P_c^f(x)$

Example – Bregman Projection onto Hyperplane

For a scalar β , consider the hyperplane $\mathcal{H} = \{x : \sum_{i=1}^{n} x_i = \beta\}$

The standard Euclidean projection onto $\mathcal H$ is[†]

$$P_{\mathcal{C}}(x) = \operatorname{argmin}_{z \in \mathcal{H}} \frac{1}{2} ||z - x||^{2} = x - \frac{\mathbf{1}^{\top} x - \beta}{n} \mathbf{1}$$

Picking f to be negative entropy yields

$$P_{\mathcal{C}}^{f}(x) = \operatorname{argmin}_{z \in \mathcal{H}} \sum_{i=1}^{n} z_{i} \ln \left(\frac{z_{i}}{x_{i}}\right) - z_{i} + x_{i} = \frac{\beta x}{\mathbf{1}^{\top} x}$$

[†]Euclidean distance uses $f(x) = \frac{1}{2} ||x||^2$ and **1** is the vector of all ones

Algorithm – Mirror Descent

Consider the constrained minimization problem

 $\min_{x\in\mathcal{C}}g(x)$

Using step sizes α_k , projected gradient updates take the form

$$x^{k+1} = \underset{x \in \mathcal{C}}{\operatorname{argmin}} g(x^{k}) + (x - x^{k})^{\top} \nabla g(x^{k}) + \frac{1}{2\alpha_{k}} ||x - x^{k}||^{2}$$

Mirror descent generalizes this to

$$x^{k+1} = \underset{x \in \mathcal{C}}{\operatorname{argmin}} g(x^{k}) + (x - x^{k})^{\mathsf{T}} \nabla g(x^{k}) + \frac{1}{\alpha_{k}} D_{f}(x, x^{k})$$

Example – Mirror Descent on Nonnegative Orthant

Suppose the constraint set $C = \{x : x_i \ge 0 \text{ for all } i\}$

Mirror descent with f as negative entropy has updates of the form[†]

$$x^{k+1} = \underset{x}{\operatorname{argmin}} x^{\top} \nabla g(x^{k}) + \frac{1}{\alpha_{k}} \cdot \sum_{i=1}^{n} x_{i} \ln \left(\frac{x_{i}}{x_{i}^{k}} \right) - x_{i} + x_{i}^{k}$$

which simplifies to

$$x^{k+1} = x^k \bullet \exp\left(-\alpha_k \nabla g(x^k)\right)$$

where • denotes element-wise multiplication

[†]A subscript *i* is used to denote the *i*-th component of vectors

Example – Mirror Descent on Simplex

Suppose the constraint set \mathcal{C} is the unit simplex Δ_n

Mirror descent with f as negative entropy has updates of the form

$$w^{k} = \left(\sum_{j=1}^{n} x_{j}^{k} e^{-\alpha_{k} \nabla g(x^{k})_{j}}\right)^{-1}$$
$$x_{i}^{k+1} = w^{k} x_{i}^{k} e^{-\alpha_{k} \nabla g(x^{k})_{i}} \quad \text{for all } i = 1, 2, \dots, n$$

The w^k term ensures each x^k is in the simplex Δ_n

Algorithm – Generalized Proximal Gradient

Consider the minimization of the sum of two convex functions:[†]

 $\min_{x} g(x) + h(x)$

Proximal gradient updates take the form

$$x^{k+1} = \underset{x}{\operatorname{argmin}} g(x) + h(x^{k}) + (x - x^{k})^{\top} \nabla h(x^{k}) + \frac{1}{2\alpha_{k}} ||x - x^{k}||^{2}$$

This can be generalized to
$$x^{k+1} = \underset{x}{\operatorname{argmin}} g(x) + h(x^{k}) + (x - x^{k})^{\top} \nabla h(x^{k}) + \frac{1}{\alpha_{k}} D_{f}(x, x^{k})$$

[†]This is a generalization of the problem for mirror descent

Convergence of Generalized Proximal Gradient

$\mathsf{Assumptions}^\dagger$

- h is differentiable, dom $(f) \subseteq$ dom(h)
- $L \cdot f(x) h(x)$ is convex for some L > 0
- If $x^k \in int(dom(f))$, then $x^{k+1} \in int(dom(f))$
- Minimizer is obtained at $x^* \in \text{dom}(f)$ and $g(x^*) + h(x^*)$ is finite

Picking $\alpha_k = 1/L$ yields $g(x^k) + h(x^k) \le g(x^*) + h(x^*) + \frac{L \cdot D_f(x^*, x^1)}{k}$

[†]These are in addition to those previously stated

Found this useful?

+ Follow for more

🔁 Repost to share with friends

Howard Heaton

