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Motivation

Optimization algorithms should respect problem geometry

Standard algorithms (e.g. proximal gradient) use Euclidean geometry

These slides describe how to use a function f for various geometries

Note: We assume f is strictly convex, proper, and differentiable in its domain

8



Definition

The Bregman divergence Df associated with f is given by

Df (x , y ) = f (x) � f (y ) �Yf (y )„(x � y )
i.e. difference between function value at x and a linear estimate from y to x
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Area View of Bregman Divergence

In one dimension, this divergence can be represented as an area:

Area( ) = Df (x , y ) = E x

y
f ¨(z) dz � f ¨(y )(x � y )
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Key Properties

•Convexity: Df (x , y ) is convex in x when y is fixed

•Positivity: Df (x , y ) ' 0 with equality if and only if x = y

•Asymmetry: possible to have Df (x , y ) j Df (y , x)
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Example – Ellipsoidal Norms

If M is a positive definite matrix and f (x) = 1
2ΩxΩ2

M = 1
2x„Mx , then

Df (x , y ) = 1
2x„Mx �

1
2y„My � (My )„(x � y )

= 1
2(x � y )„M(x � y )

= 1
2Ωx � yΩ2

M

Special Case: If M = I, Bregman divergence equals Euclidean distance squared,

i.e. Df (x , y ) = 1
2Ωx � yΩ2
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Example – Logarithmic Barrier

The logarithmic barrier uses f ⇥ (0,ô)n � R given by

f (x) = �
n

=
i=1

ln(xi ) º Df (x , y ) = n

=
i=1

⇤xi
yi

� ln ⇤xi
yi
 � 1 

vertical

asymptote

at x = 0

x
0 y1 3 5
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x

(Plot with n = 1)
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Example – Inverse Barrier

The inverse barrier uses f ⇥ (0,ô)n � R given by

f (x) = n

=
i=1

1
xi

º Df (x , y ) = n

=
i=1

1
xi

+
xi � 2yi

y 2
i

linear asymptote x�2y
y 2

vertical
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Example – KL Divergence

†We adopt the convention 0 ln(0) = 0

The negative entropy function f ⇥ (0,ô)n � R is given by

f (x) = n

=
i=1

xi ln(xi ) (Negative Entropy)

If x and y are in the unit simplex with yi > 0 for each i , then†

Df (x , y ) = n

=
i=1

xi ln ⇤xi
yi
 (KL Divergence)
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Example – Divergence with Square Root

Consider the divergence using f ⇥ [0, 1]n � R given by

f (x) = �
n

=
i=1

’
1 � x 2

i º Df (x , y ) = n

=
i=1

�⇣��
’

1 � x 2
i +

1 � xiyi’
1 � y 2

i

�⌘✏
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Bregman Projection

If C is a closed, convex, and nonempty set, then the Bregman projection

P f
C (x) = argmin

z"C
Df (z , x)

exists and is unique

C

level curves of f
x

Bregman Projection P f
C (x)Euclidean Projection PC(x)

17



Example – Bregman Projection onto Hyperplane

†Euclidean distance uses f (x) = 1
2ΩxΩ2 and 1 is the vector of all ones

For a scalar �, consider the hyperplane H = {x ⇥ <n
i=1 xi = �}

The standard Euclidean projection onto H is†

PC(x) = argmin
z"H

1
2Ωz � xΩ2 = x �

1„x � �
n 1

Picking f to be negative entropy yields

P f
C (x) = argmin

z"H

n

=
i=1

zi ln ⇤zi
xi
 � zi + xi =

�x
1„x
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Algorithm – Mirror Descent

Consider the constrained minimization problem

min
x"C

g(x)
Using step sizes ↵k , projected gradient updates take the form

x k+1 = argmin
x"C

g(x k) + (x � x k)„Yg(x k) + 1
2↵k

Ωx � x kΩ2

Mirror descent generalizes this to

x k+1 = argmin
x"C

g(x k) + (x � x k)„Yg(x k) + 1
↵k

Df (x , x k)
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Example – Mirror Descent on Nonnegative Orthant

†A subscript i is used to denote the i -th component of vectors

Suppose the constraint set C = {x ⇥ xi ' 0 for all i}
Mirror descent with f as negative entropy has updates of the form†

x k+1 = argmin
x

x„Yg(x k) + 1
↵k

�
n

=
i=1

xi ln ⇧ xi

x k
i
↵ � xi + x k

i

which simplifies to

x k+1 = x k • exp ⇥�↵kYg(x k)�
where • denotes element-wise multiplication
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Example – Mirror Descent on Simplex

Suppose the constraint set C is the unit simplex �n

Mirror descent with f as negative entropy has updates of the form

w k = ⇧ n

=
j=1

x k
j e�↵kYg(xk )j↵�1

x k+1
i = w kx k

i e�↵kYg(xk )i for all i = 1, 2, . . . , n

The w k term ensures each x k is in the simplex �n
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Algorithm – Generalized Proximal Gradient

†This is a generalization of the problem for mirror descent

Consider the minimization of the sum of two convex functions:†

min
x

g(x) + h(x)
Proximal gradient updates take the form

x k+1 = argmin
x

g(x) + h(x k) + (x � x k)„Yh(x k) + 1
2↵k

Ωx � x kΩ2

This can be generalized to

x k+1 = argmin
x

g(x) + h(x k) + (x � x k)„Yh(x k) + 1
↵k

Df (x , x k)
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Convergence of Generalized Proximal Gradient

†These are in addition to those previously stated

Assumptions †

• h is differentiable, dom(f ) N dom(h)
• L � f (x) � h(x) is convex for some L > 0

• If x k " int(dom(f )), then x k+1 " int(dom(f ))
•Minimizer is obtained at xì " dom(f ) and g(xì) + h(xì) is finite

Picking ↵k = 1/L yields g(x k) + h(x k) & g(xì) + h(xì) + L�Df (xì
,x 1)

k
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Found this useful?

+ Follow for more

� Repost to share with friends

Howard Heaton
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