Bregman Divergences

A natural way to measure closeness
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Motivation

Optimization algorithms should respect problem geometry
Standard algorithms (e.g. proximal gradient) use Euclidean geometry

These slides describe how to use a function f for various geometries

Note: We assume f is strictly convex, proper, and differentiable in its domain




Definition

The Bregman divergence D¢ associated with f is given by

Dr(x,y) = F(x) = f(y) =VF(y) (x = y)
I.e. difference between function value at x and a linear estimate from y to x
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Area View of Bregman Divergence

In one dimension, this divergence can be represented as an area:
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Key Properties

e Convexity: D¢(x,y) is convex in x when y is fixed

e Positivity: Df(x,y) = 0 with equality if and only if x = y

e Asymmetry: possible to have Df(x,y) # D¢(y, x)



Example — Ellipsoidal Norms

If M is a positive definite matrix and f(x) = %HXH%/, = %XT/\//X, then

1 1
Dr(x,y) = 5x" Mx = 5y" My = (My)" (x = y)

= S0c=9)M(x - y)

1 2
= Sl =yl

Special Case: If M =1, Bregman divergence equals Euclidean distance squared,

: >
i.e. De(x,y) = %lIX -yl



Example — Logarithmic Barrier

The logarithmic barrier uses f: (0, )" — R given by

f(x) = Zln - Df(x,y):i(%—ln(%)—l)
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Example — Inverse Barrier

The inverse barrier uses f: (0, 00)" — R given by

— 1 ~ 1 x =2y
f(X):Zy =  Di(xy)=) v+ +—5—
=1 =1 Yi
a
vertical
asymptote
at x =0 =
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Example — KL Divergence

The negative entropy function f: (0, 0)” = R is given by
f(x) = ZX,' In(x;) (Negative Entropy)
i=1

If x and y are in the unit simplex with y; > 0 for each i, then!
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Df(x,y) = ix,-ln (%) (KL Divergence)
i=1
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=X1 (Plot with n = 2)
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"We adopt the convention 0 In(0) =0



Example — Divergence with Square Root

Consider the divergence using f:[0,1]" = R given by

f(x)=—i\/1—x,-2 - Df(x,y)=i(—\/1—xlz+ﬂ)

i=1

5 (Plot with n=1)




Bregman Projection

If C is a closed, convex, and nonempty set, then the Bregman projection

Pcf(x) = argmin D¢(z, x)

zel

exists and is unique
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Example — Bregman Projection onto Hyperplane

For a scalar B, consider the hyperplane H = {x : Zlex,- =G}

The standard Euclidean projection onto H is!

Pe(x) —argm|n—||z—x|| x————->>"1
ZEH

Picking f to be negative entropy yields
Bx

P.(x) = argmin ZZ In (j) =z X = T

zEH

=1

TEuclidean distance uses f(x) = %||x||2 and 1 is the vector of all ones



Algorithm — Mirror Descent

Consider the constrained minimization problem

min g(x)

xeC

Using step sizes ay, projected gradient updates take the form

: 1
x*** = argmin g(xk) + (x — xk)TVg(xk) + —||x - ><k||2
xeC 2ak
Mirror descent generalizes this to l

1
X! = argmin g(xk) + (x - xk)TVg(xk) + a—kDf(x,xk)
xeC



Example — Mirror Descent on Nonnegative Orthant

Suppose the constraint set C = {x : x; = 0 for all /}

Mirror descent with f as negative entropy has updates of the form!

n
Kk+1 T K 1 X K
x" = argminx’ V g(x )+—~ZX,—In —;{ - X; + X
% i i=1 Xi

i

which simplifies to

X = x e exp (—ang(Xk))

where e denotes element-wise multiplication

A subscript / is used to denote the /-th component of vectors



Example — Mirror Descent on Simplex

Suppose the constraint set C is the unit simplex A,

Mirror descent with f as negative entropy has updates of the form

n

=il
Wk _ (Z k —ang(x )j)

k+1 k k _—ouvg(xh); )
X; wix e VIO foralli=1, 2,

k k. - :
The w" term ensures each x* is in the simplex A,



Algorithm — Generalized Proximal Gradient

Consider the minimization of the sum of two convex functions:'

min g(x) + h(x)
Proximal gradient updates take the form

1
X = argmin g(x) + h(x*) + (x = xX)T 7 h(x") + 50— IIx = x|’
X k

This can be generalized to l

1
X = argmin g(x) + h(x) + (x = x)T v h(x*) + o, Dr(x, x“)

This is a generalization of the problem for mirror descent



Convergence of Generalized Proximal Gradient

AssumptionsT

* h is differentiable, dom(f) € dom(h)

o[ - f(x)— h(x) is convex for some L >0

o If X € int(dom(f)), then x*** € int(dom(f))

e Minimizer is obtained at x* € dom(f) and g(x*) + h(x™) is finite

Picking o = 1/L yields g(x*) + h(x") < g(x*) + h(x") + L2L0)

"These are in addition to those previously stated
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