
Continuous and Discrete Perspectives

How Euler’s Methods relate to Gradient Descent and Proximal Point

forward Euler = gradient descent

backward Euler = proximal point
yellow curve is solution to
the ODE ẋ = �Y f (x)

x(0)

minimizer xì

Howard Heaton
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Setting

For convex and differentiable f (x) with minimizer xì, we consider the problem

min
x

f (x)
f

tangent line

f (x) + (y � x)„Y f (x) & f (y )

xì

f (xì)
x

f (x)

y

f (y )

inequality holds for convex f
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Outline

†The dependence of x on is t implicit, i.e. x = x(t)

•Analyze paths of solutions to ordinary differential equation†

dx
dt = �Y f (x)

•Relate forward Euler to gradient descent

•Relate backward Euler to proximal point
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Example Trajectory

x(0)

x(1)
x(3)xì

level curves of f

trajectory is perpendicular
to level curves

As t � ô, trajectory x(t) converges to minimizer xì of f (x) = x 2
1 + 3x 2

2
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Convergence Analysis

Consider the energy E(t) defined as the sum of two nonngative terms:

E(t) = 2t�f (x) � f (xì)� + Ωx � xìΩ2

This energy is monotonically decreasing (see next slide), which implies

f (x) � f (xì) & E(t)
2t & E(0)

2t = Ωx � xìΩ2

2t

and so f (x) � f (xì) as t � ô
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Convergence Analysis

†Here we use dot notation for time derivatives, i.e. ẋ = dx/dt

Differentiating the energy E(t) in time reveals†

Ė = 2�f (x) � f ì� + 2tY f (x)„ẋ + 2(x � xì)„ẋ

= 2 f (x) + (xì � x)„Y f (x) � f ì⇢Õ ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ — ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
& 0 by convexity of f

� 2tΩY f (x)Ω2Õ ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
& 0

& 0

Thus, Ė(t) & 0, and so E is monotonically decreasing
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Forward Euler

For time step � > 0, set x k = x(k�) so the forward Euler approximation is

x k+1 � x k

�
= �Y f (x k)

which may be rewritten as

x k+1 = x k � �Y f (x k)
Gradient descent is forward Euler for our ODE
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Backward Euler

The implicit approximation

x k+1 � x k

�
= �Y f (x k+1)

may be written as

0 = �Y f (x k+1) + x k+1 � x k

which holds when x k+1 solves

min
x
�f (x) + 1

2Ωx � x kΩ2

i.e. x k+1 = prox�f (x k) and proximal point is backward Euler for our ODE
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Example Trajectory

x 1

x 2

x 1

x 2

x(0)

xì

gradient descent = forward Euler

proximal point = backward Euler

Dots show discrete steps
of each method

With appropriate �, both forward Euler and backward Euler converge to xì
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Takeaways

•Optimization algorithms typically have continuous analogues

•Continuous formulation is often simple to analyze

•Gradient descent and proximal point correspond to Euler discretizations
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Appendix – Extensions

Proximal gradient for f = g + h has both implicit and explicit terms:

x k+1 � x k

�
" �@g(x k+1) �Yh(x k )

ø 0 " @g(x k+1) +Yh(x k ) + x k+1 � x k

�

ø x k+1 = argmin
x

g(x) + h(x k ) + áYh(x k ), x � x k ç + 1
2�Ωx � x kΩ2

ø x k+1 = prox�g(x k �Yh(x k ))
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Appendix – Extensions

•Runge-Kutta methods can be used to solve ẋ = �Y f (x), but in

optimization we are typically more interested in convergence to the limit xì

than matching this ODE trajectory

• Second-order ODEs can be discretized to give accelerated algorithms

(e.g. Nesterov acceleration)
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