Continuous and Discrete Perspectives

How Euler's Methods relate to Gradient Descent and Proximal Point

forward Euler = gradient descent

yellow curve is solution to
the ODE x = =V f(x)

minimizer x*

Howard Heaton Typal Academy &



Setting

For convex and differentiable £(x) with minimizer x*, we consider the problem

mXin f(x)

tangent line

F(x)+(y=x)" VF(x) = Fy)
A ~ >4
inequality holds for convex f
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QOutline

* Analyze paths of solutions to ordinary differential equationT

dx
E = —Vf(X)

* Relate forward Euler to gradient descent

* Relate backward Euler to proximal point

The dependence of x on is t implicit, i.e. x = x(t)



Example Trajectory

trajectory is perpendicular x(0)

to level curves
level curves of f \

As t — oo, trajectory x(t) converges to minimizer x* of f(x) = xi + 3x3



Convergence Analysis

Consider the energy £(t) defined as the sum of two nonngative terms:

E(t) =2t F(x) = F(x) |+ lIx = x7|I?

This energy is monotonically decreasing (see next slide), which implies

F(x) - F(x") < 52(? < 55?) _ I = I

and so f(x) = f(x*) as t — o0




Convergence Analysis

Differentiating the energy £(t) in time reveals'

T

¢ = z[f(x) - f*} + 2tV ) Tx+ 2(x — x*) Tk

=2[f(x)+ (x" = x) VF(x)=f"] - 2t v FO)II°

<0

< 0 by convvexity of f
<0

Thus, S(t) < 0, and so £ is monotonically decreasing

"Here we use dot notation for time derivatives, i.e. x = dx/dt



Forward Euler

For time step A > 0, set x* = x(kX) so the forward Euler approximation is
= -V f(x")
which may be rewritten as

Xt =x - av f(xk)

Gradient descent is forward Euler for our ODE




Backward Euler

'he implicit approximation
X - X +
—— = -V (Xk 1)

may be written as

0=AV f(xk+1) + X o XK

which holds when x*** solves
1
min Af(x) + 5 llx - x“|I?

e xt = proxxf(xk) and proximal point is backward Euler for our ODE




Example Trajectory

gradient descent = forward Euler x(0)

proximal point = backward Euler

—————

Dots show discrete steps

of each method

With appropriate X, both forward Euler and backward Euler converge to x*



Takeaways

e Optimization algorithms typically have continuous analogues

e Continuous formulation is often simple to analyze

* Gradient descent and proximal point correspond to Euler discretizations



Appendix — Extensions

Proximal gradient for f = g + h has both implicit and explicit terms:

Xk+1 _Xk
= e -8g(x

k+1
X )

—Vh(x")

Xk+1 _ Xk
) +Vh(x") + ——

< 0€ ('?g(XkJr1

k+1
— X

1
argmin g(x) + h(xk) + <Vh(xk),x - Xk> + ﬁHx - xk||2

k+1

|

= proxxg(xk - Vh(xk))



Appendix — Extensions

* Runge-Kutta methods can be used to solve x = =V f(x), but in
optimization we are typically more interested in convergence to the limit x*

than matching this ODE trajectory

e Second-order ODEs can be discretized to give accelerated algorithms

(e.g. Nesterov acceleration)



