3 Ways Optimization

is

Well-Conditioned

or

III-Conditioned

Howard Heaton

Given input data d and a function f_d , consider

 $\min_{x} f_d(x).$

Assume x_d^{\star} is the unique solution to this problem, *i.e.*

$$x_d^{\star} = \underset{x}{\operatorname{arg\,min}} f_d(x).$$

Three matters of interest:

- ▶ How solutions x_d^{\star} change with input data d
- How the landscape (e.g. gradients) change with x

How ratios of singular values affect matrix behavior

Howard Heaton

Conditioning of Problem

The problem's relative condition number is

$$\kappa_{f}(d) = \lim_{\delta \to 0^{+}} \sup_{\|p\| \le \delta} \frac{\|x_{d+p}^{\star} - x_{d}^{\star}\|}{\|x_{d}^{\star}\|} / \frac{\|p\|}{\|d\|}$$

This can be viewed as the limit of the supremum over all infinitesimal perturbations p. Differences in solutions are divided by the size of the solution itself; in the denominator, perturbations p are considered relative to the norm of input data d. If x_d^* is differentiable, then $\kappa_f(d) = \left\| \frac{\partial x_d^*}{\partial d} \right\| \cdot \frac{\|d\|}{\|x_d^*\|}.$

Howard Heaton

Conditioning of Landscape (Operator)

The landscape of a function is here described in terms of how it is traversed (*e.g.* gradient descent). If T_d is a map from each point x to a point $T_d(x)$, then the relative condition number for the landscape is

$$\kappa_{f,d}(x) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|T_d(x+p) - T_d(x)\|}{\|T_d(x)\|} / \frac{\|p\|}{\|x\|} .$$

Note: It would be more proper to call this the condition number for the operator T_d , but "function landscapes" are widely known and discussed (unlike operators).

Special Case – Gradient Descent

If f_d is twice differentiable with Hessian $H_d(x)$ and the operator T_d gives the update in gradient descent, *i.e.*

$$T_d(x) = x - \alpha \nabla f_d(x)$$

for a step size $\alpha > 0$, then

$$\kappa_{f,d}(x) = \||-\alpha H_d(x)\| \cdot \frac{\|x\|}{\|x-\alpha \nabla f_d(x)\|},$$

where I is the identity matrix. For $x_d^* \neq 0$, this implies

$$\kappa_{f,d}(x_d^{\star}) = \||-\alpha H_d(x_d^{\star})\|.$$

Howard Heaton

Conditioning of Matrix

The condition number of a square and invertible matrix A is defined to be

 $\kappa(A) = ||A|| ||A^{-1}||.$

When using the Euclidean norm $(i.e. \|\cdot\| = \|\cdot\|_2)$,

$$\kappa(A) = \frac{\sigma_{max}(A)}{\sigma_{min}(A)}.$$

If A is singular, we set $\kappa(A) = \infty$.

Example – Linear System

Given a square and nonsingular matrix A and vector d, consider solving the linear system Ax = d. This can be formulated as a minimization problem:

 $\min_{x} \left\| Ax - d \right\|^2.$

Here $x_d^{\star} = A^{-1}d$, and so $\kappa_f(d) = \underbrace{\left\| \frac{\partial x_d^{\star}}{\partial d} \right\|}_{\|A^{-1}\|} \frac{\|d\|}{\|x_d^{\star}\|} = \|A^{-1}\| \cdot \frac{\|Ax_d^{\star}\|}{\|x_d^{\star}\|} \le \|A^{-1}\| \|A\|.$

Thus, $\kappa_f(d) \leq \kappa(A)$.

Howard Heaton

Consider solving the problem via gradient descent, *i.e.*

$$T_d(x) = x - \alpha A^{\mathsf{T}}(Ax - d),$$

where $\alpha > 0$ is a step size. Then

$$\kappa_{f,d}(x) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|p - \alpha A^{\mathsf{T}} A p\|}{\|p\|} \cdot \frac{\|x\|}{\|x - \alpha A^{\mathsf{T}} (Ax - d)}$$
$$= \frac{\||1 - \alpha A^{\mathsf{T}} A\| \cdot \|x\|}{\|(1 - \alpha A^{\mathsf{T}} A)x + \alpha A^{\mathsf{T}} d\|},$$

which implies

$$\kappa_{f,d}(x_d^{\star}) = \left\| \mathbf{I} - \alpha A^{\top} A \right\|$$

and

$$\lim_{\|x\|\to\infty}\kappa_{f,d}(x)\leq\kappa\left(\mathsf{I}-\alpha A^{\mathsf{T}}A\right).$$

Both the problem and landscape condition numbers relate to matrix condition numbers.

The condition number of the problem is bounded by the condition number of the matrix A.

► If A is singular, then $\kappa(A) = \infty$ and problem may not have a unique solution. However, the landscape can still be "well-behaved" in this case, *e.g.* consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$

Howard Heaton

How to (Loosely) Classify Conditioning

▶ Well-Conditioned

small condition number (e.g. 1, 10, 100)

Ill-Conditioned

large condition number (*e.g.* 10⁵, 10²⁰)

Example – Quadratic Function

With scalar data d, consider the problem

$$\min_{x} \frac{\left(x_{1}-2^{d}\right)^{2}}{2} + \frac{x_{2}^{2}}{2}$$

The solution is $x_d^* = (2^d, 0)$. Letting f_d denote the objective, the gradient is $\nabla f_d(x) = x - x_d^*$, and the Hessian H_d is the identity matrix. Consider use of gradient descent with step size equal to one half, *i.e.*

$$T_d(x) = x - \frac{1}{2} \nabla f_d(x) = \frac{1}{2} \left(x + x_d^{\star} \right).$$

Howard Heaton

Landscape is Well-Conditioned

$$\kappa_{f,d}(x) = \frac{\|H_d(x)\|}{2} \cdot \frac{\|x\|}{\|x - \nabla f_d(x)/2\|} = \frac{\|x\|}{\|x + x_d^{\star}\|}.$$

Thus, if $x_1 \ge 0$, then $\kappa_{f,d}(x) \le 1$. In particular,

$$\lim_{x \to x_d^*} \kappa_{f,d}(x) = \frac{1}{2} \quad \text{and} \quad \lim_{\|x\| \to \infty} \kappa_{f,d}(x) = 1.$$

Problem is III-Conditioned

$$\kappa_f(d) = \left\| \frac{\partial x_d^*}{\partial d} \right\| \cdot \frac{|d|}{\|x_d^*\|} = \ln(2) \cdot 2^d \cdot \frac{|d|}{2^d} = \ln(2) \cdot |d|.$$

This implies $\kappa_f(d)$ gets large as d increases, *i.e.*

$$\lim_{d\to\infty}\kappa_f(d)=\infty.$$

Ill-conditioned as x_d^* moves far with small change in d.

Howard Heaton

Example – Rosenbrock Function

With scalar data d, consider the problem

$$\min_{x} \frac{(x_1-1)^2}{2} + \frac{d(x_2-x_1^2)^2}{2}.$$

For each choice of d, the solution is $x_d^{\star} = (1, 1)$. Hence

$$\kappa_f(d) = \left\| \frac{\partial x_d^*}{\partial d} \right\| \cdot \frac{|d|}{\|x_d^*\|} = 0 \cdot \frac{d}{\sqrt{2}} = 0,$$

and so the problem is well-conditioned.

Yet, estimating x_d^* numerically is difficult as d increases...

Howard Heaton

Here the gradient is

$$\nabla f_d(x) = \begin{bmatrix} (x_1 - 1) + 2dx_1(x_1^2 - x_2) \\ d(x_2 - x_1^2) \end{bmatrix}$$

and the Hessian is

$$H_d(x) = \begin{bmatrix} 1 + 2d(3x_1^2 - x_2) & -2dx_1 \\ -2dx_1 & d \end{bmatrix}$$

To show ill-conditioning, it suffices to consider a gradi-

ent descent step at z = (-1, 1) with $\alpha = 1/2$. Here $\nabla f_d(z) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ and $H_d(z) = \begin{bmatrix} 1+4d & 2d \\ 2d & d \end{bmatrix}$.

Howard Heaton

Consequently,

$$\kappa_{f,d}(z) = \frac{\||-\alpha H_d(z)\| \cdot \|z\|}{\|z - \alpha \nabla f_d(z)\|} \approx \frac{1 + 5d}{2} \cdot \frac{\sqrt{2}}{1}$$

where the approximation holds when d is large.¹ Thus,

$$\lim_{d\to\infty}\kappa_{f,d}(z)=\infty.$$

Generally, $\kappa_{f,d}(x)$ is large when d is large and $x_2 = x_1^2$, *i.e.* the landscape is ill-conditioned in the "valley" about this curve. The following plots show this "valley" becomes narrower and gets steeper sides as d increases.

¹The exact formula for $\|I - \alpha H_d(z)\|$ is omitted to keep clean presentation.

Rosenbrock function contours for d = 1. Dot $= x_d^*$.

Howard Heaton

Rosenbrock function contours for d = 10. Dot $= x_d^{\star}$.

Howard Heaton

Rosenbrock function contours for d = 100. Dot $= x_d^*$.

Howard Heaton

Well-Conditioned Concepts in Optimization

▶ Problem Condition Number $\kappa_f(d)$ small changes in $d \rightarrow$ small changes in solution x_d^*

► Landscape Condition Number $\kappa_{f,d}(x)$ small changes in $x \rightarrow$ small changes in $T_d(x)$

• Matrix Condition Number $\kappa(A)$

the ratio $\frac{\sigma_{max}(A)}{\sigma_{min}(A)}$ of singular values is small

Howard Heaton

Found this useful?

- + Follow me for more
- 🔁 Repost to share with friends

