3 Ways Optimization

is

Well-Conditioned

or

Ill-Conditioned

Given input data d and a function f_d , consider

min $f_d(x)$.

Assume x_d^{\star} \vec{d} is the unique solution to this problem, *i.e.*

$$
x_d^* = \argmin_x f_d(x).
$$

Three matters of interest:

 \blacktriangleright How solutions x_d^{\star} change with input data a

 \blacktriangleright How the landscape (e.g. gradients) change with x

▶ How ratios of singular values affect matrix behavior

Conditioning of Problem

The problem's relative condition number is

$$
\kappa_f(d) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|x_{d+p}^\star - x_d^\star\|}{\|x_d^\star\|} / \frac{\|p\|}{\|d\|}
$$

This can be viewed as the limit of the supremum over all infinitesimal perturbations p. Differences in solutions are divided by the size of the solution itself; in the denominator, perturbations p are considered relative to the norm of input data d. If x_d^{\star} \vec{d} is differentiable, then $\kappa_f(d) =$ $\overline{}$ ∂x_d^{\star} ∂d $\overline{}$ $\cdot \frac{\|d\|}{\|d\|}$ $\overline{||x_d^*||}$

Conditioning of Landscape (Operator)

The landscape of a function is here described in terms of how it is traversed (e.g. gradient descent). If T_d is a map from each point x to a point $T_d(x)$, then the relative condition number for the landscape is

$$
\kappa_{f,d}(x) = \lim_{\delta \to 0^+} \sup_{\|p\| \leq \delta} \frac{\|T_d(x + p) - T_d(x)\|}{\|T_d(x)\|} / \frac{\|p\|}{\|x\|}.
$$

Note: It would be more proper to call this the condition number for the operator T_d , but "function landscapes" are widely known and discussed (unlike operators).

Special Case – Gradient Descent

If f_d is twice differentiable with Hessian $H_d(x)$ and the operator T_d gives the update in gradient descent, *i.e.*

$$
T_d(x) = x - \alpha \nabla f_d(x)
$$

for a step size $\alpha > 0$, then

$$
\kappa_{f,d}(x) = ||| - \alpha H_d(x)|| \cdot \frac{||x||}{||x - \alpha \nabla f_d(x)||},
$$

where I is the identity matrix. For $x_d^\star \neq 0$, this implies

$$
\kappa_{f,d}(x_d^\star) = ||| - \alpha H_d(x_d^\star)||.
$$

Conditioning of Matrix

The condition number of a square and invertible matrix A is defined to be

 $\kappa(A) = ||A|| ||A^{-1}||.$

When using the Euclidean norm (*i.e.* $\|\cdot\| = \|\cdot\|_2$),

$$
\kappa(A)=\frac{\sigma_{max}(A)}{\sigma_{min}(A)}.
$$

If A is singular, we set $\kappa(A) = \infty$.

Example – Linear System

Given a square and nonsingular matrix A and vector d, consider solving the linear system $Ax = d$. This can be formulated as a minimization problem:

 $\min_{x} \|Ax - d\|^2.$

Here $x_d^* = A^{-1}d$, and so $\kappa_f(d) =$ ÂÂÂÂÂÂÂÂ ∂x_d^{\star} ∂d \blacksquare Í ÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ $||A^{-1}||$ $||d||$ $\overline{||x_d^*||}$ $= ||A^{-1}|| \cdot$ $\|Ax_d^{\star}\|$ $\overline{||x_d^*||}$ $≤$ || A^{-1} |||| A ||.

Thus, $\kappa_f(d) \leq \kappa(A)$.

Consider solving the problem via gradient descent, *i.e.*

$$
T_d(x) = x - \alpha A^{\mathsf{T}}(Ax - d),
$$

where $\alpha > 0$ is a step size. Then

$$
\kappa_{f,d}(x) = \lim_{\delta \to 0^+} \sup_{\|p\| \le \delta} \frac{\|p - \alpha A^\top A p\|}{\|p\|} \cdot \frac{\|x\|}{\|x - \alpha A^\top (Ax - d)} \\
= \frac{\|1 - \alpha A^\top A\| \cdot \|x\|}{\|(1 - \alpha A^\top A)x + \alpha A^\top d\|},
$$

which implies

$$
\kappa_{f,d}(x_d^\star) = \left\| \mathbf{I} - \alpha A^\top A \right\|
$$

and

$$
\lim_{\|x\| \to \infty} \kappa_{f,d}(x) \leq \kappa \left(1 - \alpha A^{\top} A\right).
$$

▶ Both the problem and landscape condition numbers relate to matrix condition numbers.

▶ The condition number of the problem is bounded by the condition number of the matrix A.

If A is singular, then $\kappa(A) = \infty$ and problem may not have a unique solution. However, the landscape can still be "well-behaved" in this case, e.g. consider $A =$ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢ 1 0 $\overline{\mathcal{A}}$ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎣

0 0

⎦

How to (Loosely) Classify Conditioning

▶ Well-Conditioned

small condition number (e.g. 1, 10, 100)

▶ Ill-Conditioned

large condition number (*e.g.* 10^5 , $10^{20})$

Example – Quadratic Function

With scalar data d, consider the problem

$$
\min_{x} \frac{(x_1 - 2^d)^2}{2} + \frac{x_2^2}{2}
$$

The solution is x_d^\star = (2^d,0). Letting f_d denote the objective, the gradient is $\nabla f_d(x) = x - x_d^*$ ζ_{d}^{\star} , and the Hessian H_d is the identity matrix. Consider use of gradient descent with step size equal to one half, i.e.

$$
T_d(x) = x - \frac{1}{2} \nabla f_d(x) = \frac{1}{2} \left(x + x_d^* \right).
$$

Landscape is Well-Conditioned

$$
\kappa_{f,d}(x) = \frac{\|H_d(x)\|}{2} \cdot \frac{\|x\|}{\|x - \nabla f_d(x)/2\|} = \frac{\|x\|}{\|x + x_d^{\star}\|}.
$$
\nThus, if $x_1 \ge 0$, then $\kappa_{f,d}(x) \le 1$. In particular,\n
$$
\lim_{x \to x_d^{\star}} \kappa_{f,d}(x) = \frac{1}{2} \quad \text{and} \quad \lim_{\|x\| \to \infty} \kappa_{f,d}(x) = 1.
$$

Problem is Ill-Conditioned

$$
\kappa_f(d) = \left\| \frac{\partial x_d^*}{\partial d} \right\| \cdot \frac{|d|}{\left\| x_d^* \right\|} = \ln(2) \cdot 2^d \cdot \frac{|d|}{2^d} = \ln(2) \cdot |d|.
$$

This implies $\kappa_f(d)$ gets large as d increases, *i.e.*

$$
\lim_{d\to\infty}\kappa_f(d)=\infty.
$$

III-conditioned as x_d^{\star} moves far with small change in d .

Example – Rosenbrock Function

With scalar data d , consider the problem

$$
\min_{x} \frac{(x_1 - 1)^2}{2} + \frac{d(x_2 - x_1^2)^2}{2}.
$$

For each choice of d, the solution is $x_d^* = (1, 1)$. Hence

$$
\kappa_f(d) = \left\| \frac{\partial x_d^*}{\partial d} \right\| \cdot \frac{|d|}{\left\| x_d^* \right\|} = 0 \cdot \frac{d}{\sqrt{2}} = 0,
$$

and so the problem is well-conditioned.

Yet, estimating x_d^\star numerically is difficult as d increases...

Here the gradient is

$$
\nabla f_d(x) = \left[\begin{array}{c} (x_1 - 1) + 2dx_1(x_1^2 - x_2) \\ d(x_2 - x_1^2) \end{array} \right]
$$

and the Hessian is

$$
H_d(x) = \begin{bmatrix} 1 + 2d(3x_1^2 - x_2) & -2dx_1 \\ -2dx_1 & d \end{bmatrix}
$$

To show ill-conditioning, it suffices to consider a gradi-

ent descent step at $z = (-1, 1)$ with $\alpha = 1/2$. Here

$$
\nabla f_d(z) = \begin{bmatrix} -2 \\ 0 \end{bmatrix} \text{ and } H_d(z) = \begin{bmatrix} 1 + 4d & 2d \\ 2d & d \end{bmatrix}.
$$

Consequently,

$$
\kappa_{f,d}(z) = \frac{\|1 - \alpha H_d(z)\| \cdot \|z\|}{\|z - \alpha \nabla f_d(z)\|} \approx \frac{1 + 5d}{2} \cdot \frac{\sqrt{2}}{1}
$$

where the approximation holds when d is large.^{[1](#page-0-0)} Thus,

$$
\lim_{d\to\infty}\kappa_{f,d}(z)=\infty.
$$

Generally, $\kappa_{f,d}(x)$ is large when d is large and $x_2 = x_1^2$ *i.e.* the landscape is ill-conditioned in the "valley" about this curve. The following plots show this "valley" becomes narrower and gets steeper sides as d increases.

¹The exact formula for $||I - \alpha H_d(z)||$ is omitted to keep clean presentation.

Rosenbrock function contours for $d = 1$. Dot = x_d^* \overline{d} .

Rosenbrock function contours for $d = 10$. Dot = x_d^* $\hat{\vec{d}}$.

Rosenbrock function contours for $d = 100$. Dot = x_d^* \tilde{d} .

Well-Conditioned Concepts in Optimization

• Problem Condition Number $\kappa_f(d)$ small changes in $d \to$ small changes in solution χ_d^\star d

 \blacktriangleright Landscape Condition Number $\kappa_{f, d}(x)$ small changes in $x \rightarrow$ small changes in $T_d(x)$

 \blacktriangleright Matrix Condition Number $\kappa(A)$

the ratio $\frac{\sigma_{max}(A)}{\sigma_{min}(A)}$ of singular values is small

Found this useful?

- + Follow me for more
- $\frac{1}{2}$ Repost to share with friends

