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Given input data d and a function fd , consider

min
x
fd(x).

Assume x⋆d is the unique solution to this problem, i.e.

x
⋆
d = argmin

x
fd(x).

Three matters of interest:

▶ How solutions x⋆d change with input data d

▶ How the landscape (e.g. gradients) change with x

▶ How ratios of singular values affect matrix behavior
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Conditioning of Problem

The problem’s relative condition number is

κf (d) = lim
δ→0+

sup
∥p∥≤δ

∥x⋆d+p − x⋆d ∥
∥x⋆d ∥

/∥p∥
∥d∥ .

This can be viewed as the limit of the supremum over all

infinitesimal perturbations p. Differences in solutions

are divided by the size of the solution itself; in the de-

nominator, perturbations p are considered relative to

the norm of input data d . If x⋆d is differentiable, then

κf (d) =
ÂÂÂÂÂÂÂÂ
∂x

⋆
d

∂d

ÂÂÂÂÂÂÂÂ
⋅
∥d∥
∥x⋆d ∥

.
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Conditioning of Landscape (Operator)

The landscape of a function is here described in terms

of how it is traversed (e.g. gradient descent). If Td is

a map from each point x to a point Td(x), then the

relative condition number for the landscape is

κf ,d(x) = lim
δ→0+

sup
∥p∥≤δ

∥Td(x + p) − Td(x)∥
∥Td(x)∥

/∥p∥
∥x∥ .

Note: It would be more proper to call this the condition

number for the operator Td , but “function landscapes”

are widely known and discussed (unlike operators).
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Special Case – Gradient Descent

If fd is twice differentiable with Hessian Hd(x) and the

operator Td gives the update in gradient descent, i.e.

Td(x) = x − α▽ fd(x)

for a step size α > 0, then

κf ,d(x) = ∥I − αHd(x)∥ ⋅
∥x∥

∥x − α▽ fd(x)∥
,

where I is the identity matrix. For x⋆d ≠ 0, this implies

κf ,d(x⋆d ) = ∥I − αHd(x⋆d )∥.
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Conditioning of Matrix

The condition number of a square and invertible matrix

A is defined to be

κ(A) = ∥A∥∥A−1∥.

When using the Euclidean norm (i.e. ∥ ⋅ ∥ = ∥ ⋅ ∥2),

κ(A) = σmax(A)
σmin(A)

.

If A is singular, we set κ(A) = ∞.
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Example – Linear System

Given a square and nonsingular matrix A and vector d ,

consider solving the linear system Ax = d . This can be

formulated as a minimization problem:

min
x

∥Ax − d∥2.

Here x⋆d = A
−1
d , and so

κf (d) =
ÂÂÂÂÂÂÂÂ
∂x

⋆
d

∂d

ÂÂÂÂÂÂÂÂÍ ÒÒÒÒÒ Ò Ò Ò Ò Ò Ò ÒÑÒÒÒÒÒ Ò Ò Ò Ò Ò Ò Ò Ï
∥A−1∥

∥d∥
∥x⋆d ∥

= ∥A−1∥ ⋅
∥Ax⋆d ∥
∥x⋆d ∥

≤ ∥A−1∥∥A∥.

Thus, κf (d) ≤ κ(A).
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Consider solving the problem via gradient descent, i.e.

Td(x) = x − αA⊤(Ax − d),

where α > 0 is a step size. Then

κf ,d(x) = lim
δ→0+

sup
∥p∥≤δ

∥p − αA⊤
Ap∥

∥p∥ ⋅
∥x∥

∥x − αA⊤(Ax − d)

=
∥I − αA⊤

A∥ ⋅ ∥x∥
∥(I − αA⊤A)x + αA⊤d∥ ,

which implies

κf ,d(x⋆d ) =
ÂÂÂÂÂI − αA⊤

A
ÂÂÂÂÂ

and

lim
∥x∥→∞

κf ,d(x) ≤ κ (I − αA⊤
A) .
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▶ Both the problem and landscape condition numbers

relate to matrix condition numbers.

▶ The condition number of the problem is bounded

by the condition number of the matrix A.

▶ If A is singular, then κ(A) = ∞ and problem may

not have a unique solution. However, the landscape

can still be “well-behaved” in this case, e.g. consider

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Howard Heaton Typal Academy



How to (Loosely) Classify Conditioning

▶ Well-Conditioned

small condition number (e.g. 1, 10, 100)

▶ Ill-Conditioned

large condition number (e.g. 105, 1020)
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Example – Quadratic Function

With scalar data d , consider the problem

min
x

(x1 − 2d)2
2

+
x
2
2

2

The solution is x⋆d = (2d , 0). Letting fd denote the

objective, the gradient is ▽fd(x) = x − x⋆d , and the

Hessian Hd is the identity matrix. Consider use of

gradient descent with step size equal to one half, i.e.

Td(x) = x −
1

2
▽ fd(x) =

1

2
(x + x⋆d ) .
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Landscape is Well-Conditioned

κf ,d(x) =
∥Hd(x)∥
2

⋅
∥x∥

∥x −▽fd(x)/2∥
=

∥x∥
∥x + x⋆d ∥

.

Thus, if x1 ≥ 0, then κf ,d(x) ≤ 1. In particular,

lim
x→x⋆d

κf ,d(x) =
1

2
and lim

∥x∥→∞
κf ,d(x) = 1.

Problem is Ill-Conditioned

κf (d) =
ÂÂÂÂÂÂÂÂ
∂x

⋆
d

∂d

ÂÂÂÂÂÂÂÂ
⋅

∣d ∣
∥x⋆d ∥

= ln(2) ⋅ 2d ⋅ ∣d ∣
2d

= ln(2) ⋅ ∣d ∣.

This implies κf (d) gets large as d increases, i.e.

lim
d→∞
κf (d) = ∞.

Ill-conditioned as x⋆d moves far with small change in d .
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Example – Rosenbrock Function

With scalar data d , consider the problem

min
x

(x1 − 1)2
2

+
d(x2 − x 21 )2

2
.

For each choice of d , the solution is x⋆d = (1, 1). Hence

κf (d) =
ÂÂÂÂÂÂÂÂ
∂x

⋆
d

∂d

ÂÂÂÂÂÂÂÂ
⋅

∣d ∣
∥x⋆d ∥

= 0 ⋅
d√
2
= 0,

and so the problem is well-conditioned.

Yet, estimating x⋆d numerically is difficult as d increases...
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Here the gradient is

▽fd(x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1 − 1) + 2dx1(x 21 − x2)

d(x2 − x 21 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the Hessian is

Hd(x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2d(3x 21 − x2) −2dx1

−2dx1 d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To show ill-conditioning, it suffices to consider a gradi-

ent descent step at z = (−1, 1) with α = 1/2. Here

▽fd(z) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Hd(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 4d 2d

2d d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Consequently,

κf ,d(z) =
∥I − αHd(z)∥ ⋅ ∥z∥
∥z − α▽ fd(z)∥

≈
1 + 5d
2

⋅

√
2

1
,

where the approximation holds when d is large.1 Thus,

lim
d→∞
κf ,d(z) = ∞.

Generally, κf ,d(x) is large when d is large and x2 = x
2
1 ,

i.e. the landscape is ill-conditioned in the “valley” about

this curve. The following plots show this “valley” be-

comes narrower and gets steeper sides as d increases.

1The exact formula for ∥I−αHd (z)∥ is omitted to keep clean presentation.
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Rosenbrock function contours for d = 1. Dot = x⋆d .
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Rosenbrock function contours for d = 10. Dot = x⋆d .
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Rosenbrock function contours for d = 100. Dot = x⋆d .
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Well-Conditioned Concepts in Optimization

▶ Problem Condition Number κf (d)

small changes in d → small changes in solution x⋆d

▶ Landscape Condition Number κf ,d(x)

small changes in x → small changes in Td(x)

▶ Matrix Condition Number κ(A)

the ratio σmax (A)
σmin(A)

of singular values is small
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Found this useful?

+ Follow me for more

¹ Repost to share with friends
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